Unitals with many Baer secants through a fixed point

Sara Rottey

Vrije Universiteit Brussel - Universiteit Gent

srottey@vub.ac.be

joint work with Geertrui Van de Voorde

Fq12
Saratoga, July 13-17, 2015
The Hermitian curve in $\text{PG}(2, q^2)$

- $\text{PG}(2, q^2)$: Desarguesian projective plane over the finite field \mathbb{F}_{q^2}.

- A **Hermitian curve** \mathcal{H} in $\text{PG}(2, q^2)$ is a set of $q^3 + 1$ points projectively equivalent to the set of points whose coordinates (x_0, x_1, x_2) satisfy equation
 \[
x_0^{q+1} + x_1^{q+1} + x_2^{q+1} = 0.
 \]

Every line of $\text{PG}(2, q^2)$ intersects \mathcal{H} in exactly 1 point or in $q + 1$ points.

- A Hermitian curve is the classical example of a **unital**.
A Hermitian curve is the classical example of a unital.

- A unital \mathcal{U} of $\text{PG}(2, q^2)$ is a set of $q^3 + 1$ points such that every line of $\text{PG}(2, q^2)$ contains exactly 1 point of \mathcal{U} (tangent line) or $q + 1$ points of \mathcal{U} (secant line).

In $\text{PG}(2, 4)$ all unitals are classical.
The classification of unitals in $\text{PG}(2, q^2)$, $q > 2$, is an open problem.
See e.g. *Unitals in Projective Planes* by G. Ebert and S. Barwick.

All known unitals arise as *ovoidal Buekenhout-Metz unitals*, for short BM-unitals.

- Characterisations of BM-unital?
A **line spread** S in $\text{PG}(3, q)$ is a set of $q^2 + 1$ disjoint lines such that every point of $\text{PG}(3, q)$ is contained in exactly one line of S.

A **translation plane** $\mathbb{P}(S)$ of order q^2, with points \mathcal{P} and lines \mathcal{L}, can be obtained from a line spread S as follows.

- $H_\infty = \text{PG}(3, q)$
- \mathcal{P}: $q^2 + 1$ lines of spread S,
 - q^4 affine points of $\Sigma \setminus H_\infty$
- \mathcal{L}: $q^4 + q^2$ planes containing a line of S,
 - H_∞
A **line spread** S in $\text{PG}(3, q)$ is a set of $q^2 + 1$ disjoint lines such that every point of $\text{PG}(3, q)$ is contained in exactly one line of S.

A **translation plane** $\mathbb{P}(S)$ of order q^2, with points \mathcal{P} and lines \mathcal{L}, can be obtained from a line spread S as follows.

- $H_\infty = \text{PG}(3, q)$

- \mathcal{P}: $q^2 + 1$ lines of spread S,
 - q^4 affine points of $\Sigma \setminus H_\infty$

- \mathcal{L}: $q^4 + q^2$ planes containing a line of S,
 - H_∞
If S is a **Desarguesian line spread**, then $\mathbb{P}(S)$ is isomorphic to $\text{PG}(2, q^2)$.

\[
H_\infty = \text{PG}(3, q) \\
L_\infty = \text{PG}(1, q^2)
\]
An ovoidal Buekenhout-Metz unital in $\text{PG}(2, q^2)$

- An **ovoid** \mathcal{O} in $\text{PG}(3, q)$, $q > 2$, is a set of $q^2 + 1$ points, no three of which are collinear. Every plane intersects \mathcal{O} in 1 or $q + 1$ points.

$H_\infty = \text{PG}(3, q)$

Construct a BM-unital:

1. Fix a point Q of a spread line T of S.
2. Consider an ovoid \mathcal{O} through Q (in a 3-space intersecting T in Q).
3. Take a point V on $T \setminus \{Q\}$ and consider the cone VO.

$\text{PG}(4, q)$
An ovoidal Buekenhout-Metz unital in $\text{PG}(2, q^2)$

- An **ovoid** \mathcal{O} in $\text{PG}(3, q)$, $q > 2$, is a set of $q^2 + 1$ points, no three of which are collinear. Every plane intersects \mathcal{O} in 1 or $q + 1$ points.

\[H_\infty = \text{PG}(3, q) \]

- Construct a **BM-unital**:
 1. Fix a point Q of a spread line T of S.
 2. Consider an ovoid \mathcal{O} through Q (in a 3-space intersecting T in Q).
 3. Take a point V on $T \setminus \{Q\}$ and consider the cone $V\mathcal{O}$.
An ovoidal Buekenhout-Metz unital in $\text{PG}(2, q^2)$

- An **ovoid** O in $\text{PG}(3, q)$, $q > 2$, is a set of $q^2 + 1$ points, no three of which are collinear. Every plane intersects O in 1 or $q + 1$ points.

$$H_\infty = \text{PG}(3, q)$$

Construct a **BM-unital**:

1. Fix a point Q of a spread line T of S.
2. Consider an ovoid O through Q (in a 3-space intersecting T in Q).
3. Take a point V on $T \setminus \{Q\}$ and consider the cone VO.

$\text{PG}(4, q)$
The ovoidal cone $\mathcal{V}\mathcal{O}$ in $\text{PG}(4, q)$ is a \textbf{BM-unital \mathcal{U}} in $\text{PG}(2, q^2)$.

The point P (corresponding to T) is called the \textbf{special point} of \mathcal{U}. The line L_∞ is a tangent line to \mathcal{U} at P.

$H_\infty = \text{PG}(3, q)$
$P_L \infty = \text{PG}(1, q^2)$
$\mathcal{V}\mathcal{O}$

$\text{PG}(4, q)$

$\text{PG}(2, q^2)$
A **Baer subline** of $\text{PG}(2, q^2)$ is a set of $q + 1$ points on a line whose homogeneous coordinates are in the subfield $\mathbb{F}_q \leq \mathbb{F}_{q^2}$, with respect to a well-chosen frame of $\text{PG}(2, q^2)$.

A **Baer secant** to a unital \mathcal{U} is a secant intersecting \mathcal{U} in a Baer subline.

Every secant to a classical unital \mathcal{H} is a Baer secant.

Every secant to a BM-unital \mathcal{U}, that contains its special point P, is a Baer secant.

Characterisations of BM-unital in terms of Baer secants?
Known characterisations

Theorem (Lefèvre-Percsy, 1982)

Let \mathcal{U} be a unital in $\text{PG}(2, q^2)$ such that all secants are Baer secants, then \mathcal{U} is classical.

Note that a unital in $\text{PG}(2, q^2)$ has in total $(q^2 - q + 1)q^2$ secants.

Theorem (Ball, Blokhuis & O’Keefe, 1999)

Let \mathcal{U} be a unital in $\text{PG}(2, p^2)$, p prime, such that at least $(p^2 - 2)p$ secants are Baer secants, then \mathcal{U} is classical.
Known characterisations

Theorem (Quinn & Casse, 1995; Casse, O’Keefe & Penttila, 1996)

Let \mathcal{U} be a unital in $\operatorname{PG}(2, q^2)$, $q > 2$, such that all secants through a fixed point P are Baer secants, then \mathcal{U} is a BM-unital with special point P.

Theorem (Barwick & Quinn, 2001)

Let \mathcal{U} be a BM-unital in $\operatorname{PG}(2, q^2)$ with special point P. If \mathcal{U} contains a Baer secant not through P, then \mathcal{U} is classical.
Our characterisation

De Clerck and Durante (Chapter in *Current Research Topics in Galois Geometry*, 2014) posed the question:

- What is the minimum required number of secants being Baer secants, to conclude that a unital is a BM-unital?

Main Theorem (S.R. & G. Van de Voorde, 2015)

Consider a unital \mathcal{U} in $\mathrm{PG}(2, q^2)$ containing a point P such that at least $q^2 - \epsilon$ secants through P are Baer secants.

If $\epsilon \approx 2q$ for $q \geq 128$ even or $\epsilon \approx q^{3/2}/2$ for $q \geq 17$ odd, then \mathcal{U} is an ovoidal Buekenhout-Metz unital with special point P.

Sara Rottey (VUB-UGent)
Rough sketch of proof: Step 1

Given unital \mathcal{U}: $q^2 - \epsilon$ Baer secants through P.
View representation in $\text{PG}(4, q)$.

$q^2 - \epsilon$ “good” secants
ϵ “bad” secants

$H_\infty = \text{PG}(3, q)$

$\text{PG}(2, q^2)$

$\text{PG}(4, q)$
Given unital U: $q^2 - \epsilon$ Baer secants through P.

View representation in $\text{PG}(4, q)$.

$q^2 - \epsilon$ “good” secants

ϵ “bad” secants

$H_\infty = \text{PG}(3, q)$

$\text{PG}(4, q)$
Rough sketch of proof: Step 2

Given unital U: $q^2 - \epsilon$ Baer secants through P.
View representation in $\text{PG}(4, q)$.

$q^2 - \epsilon$ “good” secants
ϵ “bad” secants

$H_\infty = \text{PG}(3, q)$

$\text{PG}(4, q)$
Rough sketch of proof: Step 3

Given unital $\mathcal{U} : q^2 - \epsilon$ Baer secants through P.
View representation in $\text{PG}(4, q)$.

$q^2 - \epsilon$ “good” secants are all lines through point V

- Awful counting arguments
- Properties on intersections of unitals with subplanes

Restriction $\epsilon \leq \frac{q^3}{2}/2$

$H_\infty = \text{PG}(3, q)$

$\text{PG}(4, q)$
Given unital $\mathbf{u} : q^2 - \epsilon$ Baer secants through P.
View representation in $\text{PG}(4, q)$.

unique ovoidal cone $V\mathcal{O}$ containing these $q^2 - \epsilon$ lines

\[\epsilon \approx 2q, \: q \geq 128 \text{ even} \]
\[\epsilon \approx q^{3/2}/2, \: q \geq 17 \text{ odd} \]

$V\mathcal{O}$ corresponds to BM-unital $\text{PG}(4, q)$

$q^2 - \epsilon$ “good” secants are all lines through point V

$H_\infty = \text{PG}(3, q)$
Rough sketch of proof: Step 5

Consider an ovoidal Buekenhout-Metz unital \(U' \) of \(\text{PG}(2, q^2) \) with special point \(P \). Consider a unital \(U \) of \(\text{PG}(2, q^2) \) containing \(P \) and having \(q^2 - \epsilon \) secants through \(P \) in common with \(U' \).

If \(\epsilon \leq \frac{(q-1)q}{2} \), then \(U \) and \(U' \) coincide.

Main Theorem (S.R. & G. Van de Voorde, 2015)

Suppose \(\epsilon \approx 2q \) for \(q \geq 128 \) even, \(\epsilon \approx q^{3/2}/2 \) for \(q \geq 17 \) odd.

Let \(U \) be a unital in \(\text{PG}(2, q^2) \) containing a point \(P \) such that at least \(q^2 - \epsilon \) secants through \(P \) are Baer secants, then \(U \) is an ovoidal Buekenhout-Metz unital with special point \(P \).

Consider an ovoidal Buekenhout-Metz unital U' of $\text{PG}(2, q^2)$ with special point P. Consider a unital U of $\text{PG}(2, q^2)$ containing P and having $q^2 - \epsilon$ secants through P in common with U'. If $\epsilon \leq \frac{(q-1)q}{2}$, then U and U' coincide.

Main Theorem (S.R. & G. Van de Voorde, 2015)

Suppose $\epsilon \approx 2q$ for $q \geq 128$ even, $\epsilon \approx q^{3/2}/2$ for $q \geq 17$ odd. Let U be a unital in $\text{PG}(2, q^2)$ containing a point P such that at least $q^2 - \epsilon$ secants through P are Baer secants, then U is an ovoidal Buekenhout-Metz unital with special point P.

Thank you for your attention!
<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon \leq q - 3)</td>
<td>(q) even, (q \geq 16)</td>
</tr>
<tr>
<td>(\epsilon \leq 2q - 7)</td>
<td>(q) even, (q \geq 128)</td>
</tr>
<tr>
<td>(\epsilon \leq \frac{\sqrt{q}q}{4} - \frac{39q}{64} - O(\sqrt{q}) + 1)</td>
<td>(q) odd, (q \geq 17), (q = p^{2e}), (e \geq 1)</td>
</tr>
</tbody>
</table>
| \(\epsilon \leq \frac{\sqrt{q}q}{2} - 2q \) | \(q \) odd, \(q \geq 17 \), \(q = p^{2e+1} \), \(e \geq 1 \) \\
| | or \(q \) prime |
| \(\epsilon \leq \frac{\sqrt{q}q}{2} - \frac{67q}{16} + \frac{5\sqrt{q}}{4} - \frac{1}{12} \) | \(q \) odd, \(q \geq 17 \), \(q = p^h \), \(p \geq 5 \) |
| \(\epsilon \leq \frac{\sqrt{q}q}{2} - \frac{35q}{16} - O(\sqrt{q}) + 1 \) | \(q \) odd, \(q \geq 23^2 \), \(q = p^h \), \(h \) even for \(p = 3 \), \(q \neq 5^5, 3^6 \) |