HOPF CATEGORIES

E. BATISTA, S. CAENEPEEL, AND J. VERCRUYSSE

ABSTRACT. We introduce Hopf categories enriched over braided monoidal
categories. The notion is linked to several recently developed notions
in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf al-
gebras and duoidal categories. We generalize the fundamental theorem
for Hopf modules and some of its applications to Hopf categories.

INTRODUCTION

The starting point of this paper is enriched category theory. Given a (strict)
monoidal category V, we can consider the notion of V-category. For exam-
ple, if V is the category of sets, then a V-category is an ordinary category.
If V is the category of vector spaces, then a V-category is a linear category.
A V-category with one object is an algebra (or monoid) in V.

Now consider a braided monoidal category. The category C(V) of coalgebras
in V is a monoidal category, so we can consider C(V)-categories. A Hopf V-
category is a C(V)-category with an antipode. These definitions are designed
in such a way that C(V)-categories, resp. Hopf V-categories, with one object
correspond to bialgebras, resp. Hopf algebras in V. In the world of sets, the
notion is not of great interest, since C(Sets) = Sets: it is well-known that
every set has a unique structure of a coalgebra in Sets. Hopf categories are
groupoids, that is, categories in which every morphism is invertible. In fact,
C(V)-categories only come to life when we pass to the k-linear world!

Hopf categories are related to several recent generalizations of Hopf algebras
and monoidal categories. For example, Hopf group algebras and Hopf group
coalgebras give rise to examples of Hopf categories, respectively over the
category of vector spaces and its dual category, see Section [5| In Section
we will show that k-linear Hopf categories with a set of objects are Hopf
monoids in the sense of [7] (in particular bimonoids in the sense of [Il [5])
in a suitable duoidal category. This also indicates the relation with other
generalized Hopf-like structures, such as Hopf monads [10].
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Hopf categories with a finite number of objects can be used to construct ex-
amples of weak Hopf algebras, see Section [6] As we have mentioned above,
groupoids are Hopf categories over sets. Applying the linearization functor,
we obtain a Hopf category over the category of vector spaces, Putting this
into packed form, we obtain a weak Hopf algebra, which turns out to be the
groupoid algebra, the basic example of a weak Hopf algebra.

This brings us to duality. The second author made attempts to construct
a satisfactory duality theory for group algebras, based on the philosophy
developed in [12]. For Hopf categories, duality works. The dual of a (finite)
Hopf M.-category (also termed a k-linear Hopf category) is a Hopf M;"-
category, see Theorems and [£.6] We also have a categorical version of
the well-known property that C-comodules correspond to C*-modules, in
the case where C' is a finitely generated projective coalgebra, see Proposi-
tion 4.4

It also turns out that some well-known results about Hopf algebras can be
generalized to Hopf categories. We mention a few first results. We have a
categorical version of the important fact that the representation category of
a bialgebra carries a monoidal structure, see Section The fundamental
theorem extends to Hopf categories, see Section [9}

It is well-known that Morita contexts can be viewed as k-linear categories
with two objects. This is the starting point of Section [§, where the rela-
tionship between Hopf categories, H-Galois objects and Morita theory is
investigated. It is possible to develop descent and Galois theory for Hopf
categories, this is the topic of a forthcoming paper. Hopf categories are also
related to partial actions of groups and Hopf algebras (see [2], 14} 15 [17]),
this will be investigated in [4].

1. PRELIMINARY RESULTS ON ENRICHED CATEGORY THEORY

Let (V,®, k) be a monoidal category. We will assume that V is strict. Our
results extend easily to arbitrary monoidal categories, in view of the classical
result that every monoidal category is equivalent to a strict one, see for
example [16]. For a class X, we construct a new monoidal category V(X).
An object is a family of objects M in V indexed by X x X:

M = (Mx,y):r,yGX-

A morphism ¢ : M — N consists of a family of morphisms ¢, , : My, —
Ny in V, indexed by X x X. The tensor product M e N is defined by the
formula

(M oN)yy=Mzy® Ny,
and the unit object is J, with J,, = k, for all x,y € X. To make our
notation more transparent, we will write J,, = ke, ,, where e;, can be
viewed as an elementary matrix.
We have a functor (—)°? : V(X) — V(X). The opposite V°P of an object
V € V(X) is given by V& = V., for all z,y € X, and the opposite ¢°P of
a morphism ¢ is given by ¢y = ¢z .
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From [9, Sec. 6.2], we recall the notion of a V-category. A V-category A
consists of a class |A] = X, and an object A € V(X) together with two
classes of morphisms in V, namely,

(1) the multiplication morphisms m = mgy . : Azy @ Ay, — Az,
defined for each x,y, 2z € X;
(2) unit morphisms 7, : Jy » = kegz — Ag s, defined for each z € X,

such that the following associativity and unit conditions are satisfied:

(1) mm)y7t © (A%y ® my,Z,t) = mZ,Z,t © (mx)yvz ® AZ,t) = m§7y7z7t;
(2) M2y © (Mo @ Azy) = Azy = Mayy © (Azy @ My).

Observe that J is a V-category; the multiplication maps ke, ,®ke, . — ke, .
and the unit maps ke, , — ke, are all the identity maps.
If (V,®,k) = (Sets, x,{*}), then a V-category is an ordinary category. In-
deed, for a Sets-category A with underlying class X, set Homa(z,y) = Ay 4.
For a € Homy(z,y) = Ay, and b € Homy(y, 2) = A, ,, we define the com-
position boa = m; 4 ,(b,a). The unit morphism in Homy(z,z) = A, is
N ().
If (V,®,k)=(Mp,®,k), the category of modules over a commutative ring
k, then a V-category is also called a k-linear category.
If (V,®, k, ¢) is a braided monoidal category, then the tensor product Ae B in
V(X) of two V-categories A and B is again a V-category: the multiplication
morphisms are the compositions

mizﬁ = (May,z @ May,z) 0 (Azy @ CByy,Ay,: @ By.:)

Apy®@Byy @Ay, @By, = Ay @A, .®Bry @By, — Ay, ® By

V-categories can be organized into a 2-category yCat.

Let A and B be V-categories, with underlying classes |[A| = X and |B| =Y.
A V-functor f: A — B consists of the following data: for each z € X, we
have f(z) € Y, and we have morphisms

foy: Azy = Bra),fy)

in V such that the following diagrams commute, for all x,y, z € X:

Mz oy, z z
(3) Aﬂfay ® A%Z - Aa:,z kez o ? Aaz,x
fzﬂ@fyzi Mf(z),f(y),f(2) ifr,z m lfz’z
x), ’y 3 z
By, fw) ® Bry),f(2) By, f(2) Bi(a),f(2)

Let f,g: A — B be V-functors. A V-natural transformation o : f = g
consists of a class of morphisms o, : k — By) f(») in V such that the
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diagrams

gz, Ra
Az y — Bg(ﬂ?)vg(y) ® Bg(y)J(y)

az®fz,yi

lmg(w),g(y),f(y)
Mg(x),f(x),f(y)

By, 1) © By, ) By, £(y)

commute, for all z,y € X. We have a 2-category yCat with V-categories, V-
functors and V-natural transformation as 0O-cells, 1-cells and 2-cells. Let us
describe the composition of 1-cells and 2-cells. Given 1-cells f, f': A — B

and g, ¢: B—C,gof: A— C is given by the formulas

(90 ey = 91@). 1) © foy : Azy = Clgof)(@),(gof)(w)-

Now consider 2-cells a: f= ffand f: g=¢. axfB: gof =g of'is
defined as follows:

(@*B)e = Mg(p()g (@) af@)© (@)@ ° ) @ Bi)
= Mg (p(2),9(f (@)a(f) © Br(z) @ (9f@),f(2) © O))

Now let f,g,h: A — B be l-cells,and let a: f =g, 8: g = h be 2-cells.
We define the vertical decomposition o« : f = h by the rule

(Boa)s = My g(a),f(z) © Bz @ az).

Now fix a class X. A V-category with underlying class X is called a V-X-
category. A V-functor f : A — B between two V-X-categories A and B
is called a V-X-functor if f(x) = x for all z € X, that is, f is the identity
on objects. pCat(X) is the 2-subcategory of yCat with V-X-categories as
0-cells, V-X-functors as 1-cells and V-natural transformations as 2-cells.

If X is a singleton, then the 0-cells and 1-cells of y,Cat (X ) are V-algebras and
V-algebra morphisms. A 2-cell a : f = g between two algebra morphisms
fig: A— Bisamorphism a: k — B such that mo(g®a) =mo(a® f).
Consider the particular situation where V = Mj. Then morphisms o, :
k — B, . correspond to elements o, € B, ;, and a 2-cell o : f = g between
two k-linear X-functors consists of elements «, € B, , such that

(4) gx,y(a)ay = amfx,y(a)a

foralla € A,y and z,y € X.

Let (V,®,k) and (W,,1) be two strict monoidal categories. Recall that
a monoidal functor V — W is a triple (F, o, ¢2), where F': V — W is a
functor, ¢o : | — F(k) is a morphism in W, and 2 : FOF = Fo® is a
natural transformation, satisfying certain properties, we refer to [16, XI.4]
for detail. A monoidal functor is called strong if ¢y and @9 are isomorphisms.

Proposition 1.1. A monoidal functor F' : V — W induces a bifunctor
F: yCat — wCat. If F is a strong monoidal equivalence of categories,
then the induced bifunctor is a biequivalence.
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Proof. (sketch). Let A be a V-category, and define F'(A) as follows: F'(A);, =
F(Azy). The multiplication and unit maps are given by the formulas

m;nyZ = F(m%?hz) © @2(14-%7?/? Ay,Z)
F(Apy) @ F(Ay:) = F(Azy ® Ay ) — F(Ag2);
nh = F(ng)ogo: | — F(k) = F(Ag).

It is straightforward to show that F'(A) is a W-category.
Now let f: A — B be a V-functor. F(f): F(A) — F(B) is given by the
data

F(f);r,y = F(fa:,y) : F(Az,y> - F(Bf(x),f(y))'
We leave it to the reader to show that F'(f) is a WW-functor.
Let f,g : A — B be V-functors, and let « : f — ¢ be a V-natural
transformation. F'(«) is defined as follows.

F(a)y = Fag) o : I = F(k) = F(By) 1(x))-

F(a) is a W-natural transformation, and F': yCat — yyCat is a bifunctor.
Further details are left to the reader. [l

Let V = (V,®, k) be a monoidal category, and consider its opposite VP =
(VP ®°P k). For later use, we provide a brief description of V°P-categories.
A V°P-category consists of a class X, A € V(X) and a collection of mor-
phisms
Mzy,z: Aac,z — Ay,z ® Az,y 3 M A$,$ —k

in V. A V%-functor f : A — B consists of f : X — Y together with
morphisms fzy @ B r) — Azy in V. A VP-natural transformation
a: f = g consists of a collection of morphisms oy : By rz) — k in V.
We leave it to the reader to formulate all the necessary axioms that have to
be satisfied.

2. HOPF CATEGORIES

Let V be a strict braided monoidal category, and consider C(V), the cate-
gory of coalgebras (or comonoids) and coalgebra morphisms in V. C(V) is
again a monoidal category: the tensor product of two coalgebras, resp. two
coalgebra morphisms is again a coalgebra (resp. a coalgebra morphism),
and the unit object k of V is a coalgebra.

Now we can consider C(V)-categories, that is, categories enriched in C(V).
According to the definitions in Section |1, a C(V)-category A consists of a
class |[A| = X, and coalgebras A, ,, for all z,y € X, together with coalgebra
morphisms mg . @ Azy @ Ay, — Az, and 1y 1 Jpo = kegp — Ay
satisfying .

The definition of a C(V)-category can be restated. Before we do this, we
first make the elementary observation that a coalgebra in V(X) is an object
C € V(X), together with families of morphisms Ay, @ Cpy — Cpy @ Cpy
and €, 1 Cpy — Jpy = kegy such that (Cyy, Ay y,eq,y) is a coalgebra in
V, for all x,y € X. A coalgebra morphism between two coalgebras C' and
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D in V(X) is a morphism f: C — D in V(X) such that f,, is a coalgebra
map, for all z,y € X.

Proposition 2.1. Let X be a class and let V be a strict braided monoidal
category. A C(V)-category with underlying class X is an object in V(X)
which has the structure of V-category and of a coalgebra in V(X)) such that
the morphisms Ay, and €., define V-X-functors A : A — Ae A and
e: A— J.

Proof. Assume that A is a V-category and a coalgebra in V(X ), and consider
the following diagrams in V.

Mz,y,z

(5) Ay @ Ay Aez
AI/"!®A%Z\L lA(L‘,Z
migh
Al’yy ® Aﬂﬁyy ® Ay,z ® Ay,z : Aoaz @ Ax,z
T
(6) kex,z Ax,:c )
Az,z
Aac,a: X A:c,a:
Ma,y,z
(7> Am,y ® Ay,z z A:B,Z 9
E%y@Ey,zl iax,z
kegy ® key , —— key .
and
Nz
(8) key o Ars -
\ l&‘xﬂ;
keg o

A is a V-X-functor if and only if the diagrams and @ commute, for
all z,y,z € X. e is a V-X-functor if and only if the diagrams @ and
(8) commute, for all z,y,z € X. my, . is a coalgebra map if and only if
(5) and @ commute, and 7, is a coalgebra map if and only if @ and

commute. 0

Observe that C(V)-categories with one object correspond to bialgebras in
V. It follows from the results in Section [I| that C(V)-categories can be or-
ganized into a 2-category ¢)Cat. In particular, a C(V)-functor between
two C(V)-categories A and B is a V-functor f : A — B such that ev-
ery fzy @ Azy — DBgy is a morphism of coalgebras. For a fixed class
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X, C(V)-categories with underlying class X can be organized into a 2-
category ¢)Cat(X). A C(V)-natural transformation between two C(V)-
functors f, g : A — B consists of grouplike elements a, € B, , satisfying

1)

Let A be a V-category, and consider its opposite A°P in V(X). AP is also a
V-category, with multiplication morphisms

op __ . op op __ op __
m$,y,z - m27y:x o CAy,szZ,y : Aw,y ® Ay,z - Ay:x ® AZ:y — A:c,z - AZ,I

and unit morphisms 75° = 7,. Observe that we need the inverse braiding
here, compare to [26] 1.3].

Let C be a coalgebra in V(X). The coopposite coalgebra C°P is equal to C
as an object of V(X), with comultiplication morphisms

cop __ —1 .
Ax’y - cczvyrczyy © A%,y : CJ',’y - C$7y ® C%Zﬁ

. . CO
and counit morphisms 5y = €4,.

Proposition 2.2. Let V be a strict braided monoidal category, and let A be
a C(V)-category. Then A°PP is also a C(V)-category.

Proof. We have to show that the diagrams (5{8|) applied to A°P“°P commute.
takes the following form:

op
Mz,y,z
Appaasy =
m?AI:A,ac,y,z
Ayvx ® Ayvx ® AZ:y ® AZ:y AZ’Z ® AZ,$

From the axioms for a braiding ¢, we have the following formula, for all
A, B,C,DeV:

(10) CA®B,C®D = (C ®cap® B) o (CA,C ® CB,D) o (A ®cpc ® D)

The triangle, the squares and the pentangle in the next diagram all commute:
the top square commutes because c is natural; the pentangle is just ; the
bottom right square commutes because ¢~! is natural; commutativity of

the bottom left square follows from . We deleted the indices in the
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morphisms in the diagram; they are pretty obvious.

Ay ® Ay . Ay ®Aya = Ao
lA@A A®A
Ay @Ay @A,y @Ay ——> Ay @Ay @Ay, ® Ay s A
- A®c®A
Ary @ Ary @ Ay e ® Ay;@é‘lz,y @Ay @Ay ® Ay e Are @As
lc_1®c_1 ¢t 1!
A®cTI®A mem

Az7y ® Az7y ® Ay’x ® Ay’x > Az,y ® Ay,x ® Az,y ® Ay,x —_— AZ,$ ® AZ,:E
From the commutativity of the whole diagram, it follows that

cop op _ —1
AZ,Q? © m%y,z - (mz»yzx ® mZ,y,m) 0 (Az’y ® CAy,szz;y

® Ay7x)
—1 —1
o (cAz,yyAz,y ® cAy,amAy,cc) ° CA971®AyverZvy®szy © (Ay,x ® Ava)’

The square at the top of the next diagram commutes because ¢ is natural;
commutativity of the bottom triangle follows from .

C

Ayax ® Ayzx ® Azzy ® Azzy szy ® szy ® Ay,ét ® Ay’x

c_1®c_1i \LC_I@)C_I

Ay,:l? ® Ay,$ ® Azzy ® Azzy szy ® szy ® Ay,ét ® Ay,ét

A®c®Ai J/A®C_I®A

It follows that @ commutes. The commutativity of the three other diagrams
is obvious. (|

Proposition [2.2] generalizes the fact that the opposite-cooposite of a bialgebra
is again a bialgebra: take X a singleton. We refer to Sweedler [25] for the
case where V is the category of vector spaces, and to [26, 1.6] for the case
where V is an arbitrary braided monoidal category.

Definition 2.3. A Hopf V-category is a C(V)-category A together with a
morphism S : A — A° in V(X) such that

(11) Mayz© (Auy @ Suy) 0lgy = Mpoesy: Avy — Ay
(12) Mywy 0 (Sey ® Agy) 0Dgy = myocyy: Apy = Ayy,
for all z,y € X.

Observe that a Hopf V-category with one object is a Hopf algebra in V. If
V = My, then a Hopf V-category is also termed a k-linear Hopf category.
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Example 2.4. Sets.

Let V = (Sets, x, {*}). We have seen above that a V-category is an ordinary
category. It is well-known that every set GG is in a unique way a coalgebra
in Sets: the comultiplication is the diagonal map G — G x G, sending g
to (g,9). The counit is the unique map G — {x}. This means that the
categories Sets and C(Sets) are identical, and therefore the same is true for
the 2-categories Cat = getsCat and Q(m)%'

Now let us investigate Hopf categories. Assume that G is a Hopf category.
For all z,y € X = |G|, we have a map S, : Gy — Gy, satisfying
12)). Take a € G4, this means that a : y — x is a morphism in G. It
is easily checked that implies that aS; 4(a) = 1, and that implies
that Sy ,(a)a = 1,. This shows that every morphism of G is invertible,
hence G is a groupoid. Conversely, it is easy to show that a groupoid is a
Hopf category.

Proposition 2.5. Let V = (Sets, x,{*}). Then a Hopf V-category is the
same thing as a groupoid.

Lemma 2.6. Let A be a Hopf V-category. Then the following statements
hold, for all z,y,z € X:

(]‘3) SCC:Z o mx,y,z = mzvyﬂ: o (Sy,z ® vay) © CAzyy7Ayvz;
(14) Ay,:l: © Sa:,y = CAy,,Ay. © (51’79 & Sx,y) o A%Z/'

Proof. In order to make our computations more transparant, we introduce
some notation. A, , ® A, . is a coalgebra, with comultiplication

A:zt,y,z = (Ax,y ®ca Ay,z & Ay,z) o (Am,y & Ay,z)

and counit €,y . = €,y ® €y.. (5)) can be restated as

x,Y

(15) Dz 0Myy: = (May. @ May2) 0 Agy .
The coassociativity of A, . is expressed by the formula
(16) Aﬂzﬁ,y,z = (Azy,:®@Azy®Ay2)0lgy . = (Asy® Ay @0y 2) 0Ny y ..
Now consider the morphisms f,g,h : Ay ® Ay. — Z., given by the
formulas

f = Myzyax© (Sy,z & Sx,y) O CAy Ay, 25

g = Sz,z O Mg y,z3

h = mg,x,y,z,z o (f ® AI:?J ® Ay,z ® g) o Ai,y,z'

We compute that

mi,y,zw 0 (Azy ® Ay ®g) oAy y

Mg,z O (Ax,z 03y Sx,z) o (mz,y,z & mx,y,z) o AJc,y,z
Mg zx © (Aa:,z & S7 ,Z) © AGJ,Z O Mgy,

=N

Ne ©Cx, 20 Mgy =Tz OExy,z,
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and
h = mz,x,x o (f ® nx) o (Ax7y ® Ayvz © ECC,y,Z) © Al‘?yvz = f'
On the other hand, we have that
mz):l:vy)z © (f ® Ax’y ® Ay7z) o Am7yvz
= mg,y,x,y,z © (S?/,Z ® vay ® Afay ® Ay,2> © (cAac,y7Ay,z ® A%y ® Ayyz)
© (Axay ® CAz,yyAy,z ® Ayvz) © (Aw,y ® Ayyz)
= mi,y,x,y,z 0 (Sy,z ® Spy @ Az y ® Ay 2)
© (CA:c,y®Aac,y,Ay,z X Ayz) © (Am,y ® Ay,z)
= mg,y,y,z 0 (CayyA., ®Ayz) o (Myzy® Ay ®Azy)
E ° (Sac,y ® Azy @ Sy,z ® Ay,z) ° (A:v,y ® Ay,Z)
(112)
- mz,y,y,z o (cAy,yyAz,y ® Ay,z) © (ny ® szy ® AZ,y)
0 (Sy,: @ Ayz) 0 (Eayy @ Ay.2)
mg,y,y,z 0 (Azy ®ny® Az y)o(Sy.®Ayz) o (cay ®@Ay2)
Mz y,2 0 (Sy® Ay ) 0 Ay 20 (Exy ® Ayz)

772 © 6yzz o (6x7y ® Ayvz) = nZ ° 5x,y,z~

IS

At (%), we used the naturality of the braiding ¢, resulting in the commuta-
tivity of the diagram

CAz,y®Az,y,Ay,z

(Azy © Azy) @ Ay,

Ay,Z ® (Ax,y ® Ax,y)

(Szvy®szy)®Sy:Zl lsy&@(swyy@AE»y)
(A ® Auy) ® Auy 222000 4@ (Ao © Auy)
myyw»y@)Az,yl lAz,y(@my,z,y
Ayy @ Azy e Azy ® Ayy
Finally,
f=h = me.z0((Mz062y:)@9)0Asy.

= mZ,Z,ZE o (nZ ® Az7$) ° g o (51,972) ® Aff,y ® Ay7z) 0 Aib,y:Z = g

This proves formula . is proved using similar techniques. Now we
consider f,g,h: Azy — Ay ® Ay, given by the formulas

f = CAy,wvAy,z ° (Sx,y ® SI,Z/) ° Alyy;
9 = AyaoSey;
h = mZhA,y,:c,y,x ° (g ® Aw,y ® Az,y ® f) o AQSc,gp

AeA

In the subsequent computations, the coassociativity of m will be used

frequently. We first compute that

Ae A 2
my:fB,y © (g ® Ax,y ® Al’yy) o Am,y
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M o (Ay 2 @ Apy) o (Sey ® Ary) 0 Mgy

B YT,y
Ayyomyzy o (Sey® Azy) o Agy
(12) AeA

- Ay7y © noe‘rzy = ny o 8$,y'

It follows that
h=miulo (UA.A ® Ayz® Ay,x) © (Sx,y ®f)o Agy =T

Y,y Yy
Now
Mite © (Ary © Ay @ f) o A7,
= (m‘r:yvr ® m‘r7y7$) © (A%y ® CAQ?,:UMA?J,Z' ® Ay)m)
© (Al",y ® A{L’,y ® CAy,acyAy,x) © (A%y ® szy ® S;B,y ® Sxay) © Ai,y
= (Maye ®Maya)o (Agy @ CAz,y®Ay,z,Ay,z)
( ) © (A:L’vy ® A‘Tvy ® Sl‘,y ® S:U?y) o Ai,y
X
= (mx,y,x ® mx,y,x) 0 (Axvy ® vay ® Axvy ® Sx,y)
(12) 0 (ACU,y © A:U,y © A:p,y) © (Ax’y ® CA:c,yvAz,y) o Ag,y
- (ml'yy@ ® 77;1;) ° (A$7y ® vay) © (Afl':y ® Al‘:y ® 5177?4)
© (A‘Tvy ® cAz,yyAz,y) © A?C,y
= (Aee ®M2) 0Maye 0 (Azy @ Spy) 0 (Azy @ oy @ Agy)
o (Azy @ Apy) o Agy
— (Agmx ® 77‘7;) o m%y,x O (Aac,y ® S.Z‘,y) O OA:my
li

(Al",w ® nw) OMNg Cxy = (nm & 77:2) SERTE
At (x), we used the naturality of ¢, resulting in the commutative diagram

CAz,y,Az,y

szy ® Al‘:y Axvy ® Ax7y
Az,y®Ai \LA®AI,y
szy ® szy ® szy A:L‘,y ® Axvy ® Axvy

Az,y@sz,y@sz,yi lsz,y@Az,y@Sz,y

CAg,y®Ay,z, Ay,

Finally
f=h = mpsso(g® (0 @) ocay) 0 Ay
= my% 0 (Aye ® Ays @Naens) 090 (Ary ®esy) oDy =g
O

Theorem 2.7. Let A be a Hopf V-category. The antipode S : A — A°PP
is a C(V)-X -functor.
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Proof. First of all, we need to verify that every S, is a morphism in C(V),
that is, Sy, : Ayy — Ayx is a morphism of coalgebras. To this end, we
need the commutativity of the next two diagrams

Azy Ex,y
Sz,y Sz,y®Sa,y Sz,y c
Acop Y,z
Y,z

Ayﬂf Ayv’f ® Ay@ Ayw

The commutativity of the first diagram follows immediately from . For
the second one, we proceed as follows:

(&)

(7)
= (coy®eya)o(Apy ®Sey) 0Dy =€y 0 Sy 0 (Exy®uy)Aay
= €y’m © Sx:y'

Now we show that S is a C(V)-functor. The diagrams (3 take the following
form

Ma,y,z Tz
Az,y & Ay,z A:L",z k —— Az,x
op e
z,y,2
Ay,x ® Az,y 2, Am,z

The commutativity of the first diagram follows from , after making the
observation that mgb, . = m. . o ca,, 4., and taking into account the
formula

(Sy,z @ Szy)oca, ,A4,. = CAy,A., © (Sey ®Sy.2),
resulting from the naturality of c. The commutativity of the second diagram
goes as follows:
(e ® Anz) 0 D 01 D60 ® Ar) 0 (12 © 1)
(Eaye ©12) ® Tz = Mo © €,z O o
Mgz, © (Ax,:c & Sa:,:c) o Az,:v O Nz
My xx © (771 ® Ax,x) O Ozx OMly = Sx,x O Tz-

Nz

[l =]

O

Proposition 2.8. Let A be a Hopf V-category. For x,y € X, consider the
following statements:

(17) My OCyas = Myayo (Ays® Syq)o AZ?E ;
(18) Mo OCya = Mayw O (Sys®Ayg)o APD
(19) Sye0Sey = Azy;

(20) Ny ©Ery = m;’f’w 0 (Spy ®Azy) 0 Asy s
(21) My o Exy = Myh, 0 (Azy @ Syy)olgy.
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The following implications hold:

(18) (21)
Proof. = . This goes in two steps. First we compute that
My,zy © (Sey @ (Sye © Szy)) © Aay
My, © (Aya ® Sye) o CE;J,AW 0 CAy 1Ay © (Szy ® Sey) 0 Aay

co
My 2y © (Ayz ® Syz) 0 Ay,£ 0 Suy = My ©Eyz © Spy = My © Exyy-

I 1

Then we compute that
mi,y,x,y 0 (Apy ® Szy ® (Syz 0 Szy)) © A?z,y
is equal to
My yy © (Azy @Ny) 0 (Azy ®@xy) 0 Dzy = Agy
and, using (11]), to
Mazy (e @ Azy) © Syz © Szy 0 (Eoy ® Azy) 0 Azy = Syaz 0 Soy.

(9 = @0

Ne ©CExy = Sz,w Oy © Em,ysr,x O Mg y,x © (Ax,y ® Sz,y) o Az,y
@ Maya © (Sya ® Sey) ©CAuy Ay © (Aey ® Sey) 0 Aay
= Mgy 0 CAy,Ag, © (Soy ® (Syz0Ssy)) oAy
B e 0 (Shy ® Any) 0 Ayy.
The proof of the remaining two implications is similar. O

Corollary 2.9. Suppose that V is a symmetric monoidal category. For a
Hopf V-category, the following assertions are equivalent:

(1) holds, for all z,y € X;
(2) (18) holds, for all z,y € X;
(3) Syz0Spy=Azy, foralz,yeX.

Proof. Using the naturality of ¢ and the fact that ¢ is a symmetry, we obtain
that
mg?yyl’ © (Sm7y ® Amvy) o Az7y
Apy © (Say ® Azy) 0 Dgy

= m%y,m © (szy ® Sx)y) o CA??,ZJ’A%W © Al’,y

= mx,y,x ° cAy,za
= Mpyro (Apy ®Se,)ocy! oA
T,y,a .y zy) ©CA, Ay .y
CO
= Mgy O (Az,y ® Szy) © Ax,qf-

This tells us that considered for (z,y) € X x X is equivalent to
considered for (y,z) € X x X. The statement now follows easily. ]
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Let A and B be Hopf V-categories. A C(V)-functor f: A — B is called a
Hopf V-functor if

(22) SJ]?(x),f(y) °© f$7y - fy@ © Séq,yv
for all z,y € X.

Proposition 2.10. Let A and B be Hopf V-categories. If f: A — B is a
C(V)-functor, then it is also a Hopf V-functor.

Proof. Consider the morphisms k,g,h : Ayy — Fyy) j(o) defined by the
formulas

k= St@).p°feus 9= fua0Suy s B =70 1) 1)1 2 (K2 Fay@9)0AL .
We have that

M), (). f(x) © (fay @ g) 0 Doy
M (@), 1 (). f (@) © (fay ® fay) 0 (Any @ Szy) 0 Agy
Jrz0oMaya o (Azy @ Spy) 0 Agy

Joa 0Nz 0 ey = Nf(z) © Eayy

=]

hence

h = M), 50).4) © (Biy),fz) @ Nf() 0k 0 (Azy @ eay) 0 Ay = k.
We also have that
M), f@),f () © (k@ fay) o Day
M), f(2),£@) © (Sf@),fm) @ Bra),f) © (foy @ fay) 0 Day
M), f(2),£@) © (St@).f) © Bra),f@) © Dfa), ) © fay
= () © Ef(@),f(y) © Sy = () © Eay
so that

k=h=mp) 1)1 ° M@ © Biw).r@) 090 (Eay ® Azy) 0 Azy = g.
O

We introduce yHopfCat as the full 2-subcategory of ¢)Cat, with Hopf V-

categories as 0-cells. For two Hopf V-categories A and B, the category of
morphisms A — B in yHopfCat coincides with the category of morphisms

A — B in ¢)Cat. Thus I-cells are Hopf V-functors (in view of Proposi-
tion [2.10)) and 2-cells are C(V)-natural transformations.

Proposition 2.11. Let F' : V — W be a strong monoidal functor. F
induces bifunctors F : ¢nCat — o) Cat and yHopfCat — yyHopfCat.

Proof. F induces a strong monoidal functor F' : C(V) — C(W). For a V-
coalgebra C, F(C) is a W-coalgebra. The comultiplication is ¢, ' o F(A) :
F(C) = F(C)® F(C) — F(C®C), and the counit is ¢y o F(e) : F(C) —
F(k)—1.

Now apply Proposition to F': C(V) — C(W). We obtain a bifunctor



HOPF CATEGORIES 15

F o eonCat — gow)Cat. For a ¢y)-category A, we have that F(A),, =
F(A; ), with multiplication maps
F(mgy,z) 002 F(Azy) @ F(Ayz) = F(Azy ® Ayz) = F(Azy)

and unit maps F(n;) oo : | — F(k) = F(A).
Now let A be a Hopf V-category. We claim that the maps F'(S; ) : F(Ag,y) —
F(A, ) define an antipode on F'(A). Let us show that is satisfied. Us-
ing the fact that @9 is natural, we obtain that
F(mgya) o p20 (F(Azy) ® F(Say)) o 902_1 o F(Azy)
= F(maya)o F(Apy ® Spy)opao 8051 o F(Agy)
F(mgye o (Asy ® Sey) 0 Agy)

1=l

F(ngoezy) = F(ng)owpoo 3061 o F(esy),
as needed. The proof of is similar. O

Example 2.12. Consider the linearization functor L : Sets — Myg. It
is well-known that L is strong monoidal, so, by Proposition it sends
Hopf categories (which are groupoids, see Proposition to k-linear Hopf
categories. More precisely, consider a groupoid G, and let G, be the set of
maps from y to . Then L(G) = A is defined as follows:

Apy = kGyy.

The multiplication is the obvious one: the multiplication on G is extended
linearly. kG, has the structure of grouplike coalgebra: A, ,(g9) = g®g and
exylg) = 1 for g € G5 ,. The antipode is given by the formula S, ,(g) =
gt e Gy,

3. THE REPRESENTATION CATEGORY

Definition 3.1. Let A be a V-category. A left A-module is an object M in
V(X) together with a family of morphisms

Y= wz,y,z : A.t,y & My,z — M:c,z
in V such that the following associativity and unit conditions hold:
(24) ¢x,z,y © (77:1: ® Mx,y) = M:):,y-

Let M and N be left A-modules. A morphism ¢ : M — N in V(X) is
called left A-linear if

(25) g01l7z © Tvaﬂlj,z = ¢x’yzz © (A1l7y ® SDyvz) : ACE:Z/ ® Myvz - Nx’z’
for all z,y,z € X.

AV(X) will denote the category of left A-modules and left A-linear mor-
phisms. Right A-modules and (A, B)-bimodules are defined in a similar
way, and they form categories V(X )4 and aV(X)p.
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Proposition 3.2. Let A be a V-bicategory. Then there is a monoidal struc-
ture on AV (X) such that the forgetful functor 4V(X) — V(X) is monoidal.

Proof. Let M and N be left A-modules. We have a left A-action on M @ N
as follows:

(Vay,2 @ Yuy,2) © (Azy @ ca,ym,. ® Ny2) o (Dgy @ My . @ Ny.2) :
A%y & Myyz ® N, z AI’y &® Ax,y ® M, 2@ Ny,z
= Apy @My, Q@ Ay y @ Ny .
= My ® Ny =(M®N)y,.
J is a left H-module with structure morphisms
Exy Rkey . Apy Rkey ., = kegy @ key, = keg ..
Verification of all the other details is left to the reader. O

4. DUALITY

4.1. Dual V-categories. The notion of V-category can be dualized. A dual
V-category C consists of a class |C| = X and C € V(X) together with two
classes of morphisms in V, namely
Apyz: Cro = Cry®@Cy.and e Cpyp — K,

satisfying the following coassociativity and counit conditions

(Ax,y,z ® Cz,u) o A:v,z,u = (Cz,y & Ay,z,u) © Am,y,m

(62 @ Cry) 0 Bazy = (Cry ®ey) 0 Az yy.
Dual V-categories can be organized into a 2-category YCat. A l-cell f: C —
D between two dual V-categories C' and D is a dual V-functor, and consists

of the following data. For each z € X = |C|, we have f(z) € Y = |D|, and
for each x,y € X, the morphisms fyy 1 Dy(y) r(y) = Cay such that

(fx,y ® fy,z) o Af(:v),f(y),f(z) = A:Jc,y,z O fzz;
Ef(x) = €z © fa:,x-
Let f,g: C — D be dual V-functors. A dual V-natural transformation
a: f = g consists of morphisms oy : Dy () ¢() — k in V such that
(fay ® ay) © D) fw)ot) = (% @ Gay) © Bfa),g(@).9()>

for all x,y € X. Dual V-natural transformations are the 2-cells in V%.
The composition of 1-cells goes as follows. Let f: C = Dandg: D — FE
be dual V-functors. g o f is defined by the formulas

(9° Hay = fey©9r@.rw) ¢ Elgon@.igony) = Cry-

Now let f/: C — D and ¢ : D — FE be two more dual V-functors,
and let « : f = f'and B8 : g = ¢ be dual V-natural transformations.
axf: gof= g of isdefined by the formulas

(@xB) = (Bra) @ (2 0 G5y () © Algof) (@) (g'of) (@) (g0 f) (x)
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= (w0 g5@).p@) © Bra)) © Aigon)(@).(aof)@).a'oF) )
Now let f,g,h: C — D be dual V-functors, and let a: f=g,8: g=nh
be dual V-natural transformations. The vertical composition Soa: f=h
is the following;:

(Boa)y = (ax ® Be) © Ap(z) g(a)h(x) : Bfa)n@ — k-

Let V°P = (V°P, @°P k) be the opposite of the monoidal category V. Recall
that Homyoep (M, N) = Homy (N, M), and that the opposite tensor product
® is given by M P N =N ®@ M and f @Pg=¢g® f.

Proposition 4.1. LetV be a strict monoidal category. Then the 2-categories
V% and yopCat are 2-isomorphic.

Proof. (Sketch) We will define a 2-functor F' : V% — popCat. Take a dual
V-category C', with underlying class X, and consider A = C°P in V(X). We
have V-morphisms

Aaz,y,z : CxVZ = AZ7I - Cx7y ® Cy7z = Az7y ®0p Ay7x7

and V°P-morphisms

. o
mzyyaz = A:E)yzz : AZ,y ® P AZ/,CU - Az7m'

Alsony =€, 1 k= Ay, = Cypp is a VP-morphism, and straightforward
computations show that this makes A a V°P-category. We define F/(C) = A.
Let f: C — D be a dual V-functor, and let F/(D) = B. For all x,y € X,
we have V-morphisms

Jey © D), fy) = Brw),fe) = Coy = Ay

For all z,y € X, let g(x) = f(z) and gy» = foy. Then gy, @ Ay, —
By (y),f(z) is @ V°P-morphism, and standard arguments tell us that g : A — B
is a V°P-functor, and we define F(f) = g.

Finally let f,f' : C — D be dual V-functors and let a : f = f’ be a
dual V-natural transformation. For every x € X, we have a V-morphism
z : By px) = Dy),f/(z) — K, and therefore a V°P-morphism oy @ k —
Bi1(@),t(@) = By/(2),9(x)- We leave it to the reader to show that this defines
a V°P-natural transformation o : ¢ = F(f) = ¢ = F(f’). We define
F(a) = a. Standard computations show that F' is a 2-functor. The inverse
of I is defined in a similar way. O

A dual V-category with underlying class X is called a dual V-X-category.
A dual V-functor f between two dual V-X-categories is called a dual V-X-
functor if f(x) = z, for all x € X. YCat(X) is the subcategory of YCat,
consisting of dual V-X-categories, dual V-X-functors and dual V-natural
transformations. As an immediate corollary of Proposition 4.1} we have the
following result.

Corollary 4.2. Let X be a class, and let V be a strict monoidal category.
Then the 2-categories yor Cat(X) and YCat(X) are 2-isomorphic.
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If X is a singleton, then the objects in V%(X ) are V-coalgebras. Delet-
ing the non-unit 2-cells in ¥Cat(X), we obtain C(V)°P, the opposite of the
category of coalgebras.

4.2. Modules versus comodules. We now consider V = (Mi, ®, k), the
category of finitely generated projective modules over a commutative ring
k, and its opposite VP = (M}:Op, ®°P k). It is well-known that the functor
(=) ML — Mchp taking a module M to its dual M* = Hom(M, k) is an
equivalence of categories. Moreover, we have a strong monoidal functor

()" 90, 02) = (M, @,k) = (M, @, k).

Let ¢o : k — (k)* = k be the identity map. We now construct a natural
isomorphism

w20 @Po((=)%(=)") = (=) 0@,
For two finitely generated projective k-modules M and N, we need an iso-
morphism

wo(M,N): M*®° N* - (M ® N)*
in /\/lep, or, equivalently, an isomorphism

@wo(M,N): (M ®N)* = N*@ M*
in /\/lf€ It is well-known that the map
t: N M* = (M ®N)*, (tin* @m*),m®@n) = (n",n)(m*, m)

is invertible, with inverse given by the formula

) =Y pmi @ ng)nf @ mf,
?:7.]‘

where », m; @ m; and }_;n; @ n} are the finite dual bases of M and N.
We now define @o(M, N) as the inverse of . As ((—)*, o, p2) is strong
monoidal, it follows from Proposition that we have a biequivalence be-
tween Cat and Mfk()p@. Applying Proposition we find that Mo Cat
is 2-isomorphic to M, Cat. Combining these two biequivalences, we obtain
the following result.

Theorem 4.3. Let k be a commutative ring. (—)* induces a biequivalence
Mf
MiCat — 'k Cat.

Let us describe this biequivalence at the level of 0-cells. Suppose that A is a
k-linear category, with all underlying A, , finitely generated and projective.
First we have to apply the duality functor (—)*, sending A to A*, with
(A%)zy = AL, In order to compute the multiplication and unit maps, we
have to apply the construction sketched in the proof of Proposition The

multiplication is the following composition in M%p:

m;kc,y,z o 902("49073/7 Ay7z) : AZ,Z ® A;,y — (Al‘,y ® Ay,Z)* - A;k:,z'



HOPF CATEGORIES 19

The unit map is n% : k — A%, in M;Op. To A*, we apply the construction

T,x

performed in the proof of Proposition [4.1, which sends A* to C, with Cy,, =
A} »- The comultiplication maps are the following maps in M};:

* . * * *
Az,yw = (702(‘4357% Ayz) o mm,y,z . Ax,z - CZ,CI? - Ay,z ® Am,y - Cz,y ® Oy:x‘

The counit maps are e, =y : Cpp = Ay . — k.

Let us also give a brief description of the inverse construction. Let (C, A, ¢)
be a dual ./\/lfg—category. We will use the following Sweedler-Heyneman type
notation: for ¢ € Cy ., Ayy(c) = Clly) @ Cciy) € Cry®Cy,. Let A €

./\/lz)p(X) be defined as A,y = C; ,. The multiplication map my . : Az, ®

Ay — Az, = C7, is defined by the formula

(ab, c) = (a, c2,)){b; (1))
fora € Ay y, b € Ay, c € C;z. The unit elements are e, € Cy , = Ay o

Let C be a dual k-linear category. A right C-comodule M is an object
M € V(X) together with a family of maps

Pzxy,z - Mx,z — M:c,y ® C, 2

such that the coassociativity and counit conditions (26{27]) are satisfied. For
m € M ., we will write

Pay,(M) =Ml y) @ M1y
For all m € M, ., we need that
(26)  Myoy)10.u) © M0g)1u] @ MY1y) = Mo.u] @ M1)(1y) D MLu)(29):
in My, ®Cyy®Cy -, and
(27) m[O,z]EZ(m[l,z]) =m.
Proposition 4.4. Let k be a commutative ring, and let C be a dual k-
linear category,with underlying class X, and with all Cy , finitely generated
and projective. Let A be the corresponding k-linear category. Then the
categories M;OP(X)C and ML (X)a are isomorphic.
Proof. Let M be a right C-comodule. We have the structure maps
Peyz: Myz— Myy®Cy.
Now we claim that M is also a right A-module, with structure maps
¢I7Z7y : MI,Z ® Azzy - Mx7y’ wwvzyy(m ® a) =ma = <a’ m[lyy]>m[07y}'

Let us first show that this right A-action is associative. Take m € M, .,
acA.,and bec Ay,,. Then

(ma)b (a1 1) (b Mo 1 11,u)) M 0,4][0,0]
(@ mp ) 2,)) 0y M1 ) (1,9)) M0,

(ab, myy )Mo, = m(ab).
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Now we prove the unit property. The unit element of A, ; is €;, and for all
m € M, ,, we have that me, = (5x,m[17x}>m[ox] =m.

Conversely, let M be a right A-module. As before, let > . a?* @ ¢/* €
A,y ® Cy . be the finite dual basis of C, .. We define a right C-coaction on
M, via the structure maps

) _ Yz o YhE
Pryz: Myz— Myy ®Cy sy pryz(m) = E :mai e
i

It is straightforward to show that this makes M into a right C-comodule.
These two constructions are inverses. First we start with a right C-coaction
on M. The above construction then provides a right A-action on M, and
the a new right C-coaction p, which coincides with the original p. Indeed,
for all m € M, ., we have that

Page(m) = Y mal*@c” = (al mp )iy @
i i
= Moy ® M1y = Pay,z(m).
Now start from a right A-action on M. Applying the two constructions
from above, we arrive first at a right C-coaction on M, and then a new right

A-action that coincides with the original one: for m € M, . and a € A, ,,

we have that
— J— y7Z
m-a = (a,mp )Moy = Z(a, c")ymal” = ma.
i
(]
4.3. Duality between Hopf categories and dual Hopf categories.
(—)* induces an equivalence of categories (—)* : C(ML) — Q(MZ,OP). Ob-

serving that the categories C (Mf:p) and A(M? )P are isomorphic, we obtain
an equivalence of categories

(=) s C(M}) — A(M])*.
Let us compute the algebra structure on the dual C* of a coalgebra C'. The
coalgebra structure in ./\/lffp is the composition
p2(C,0) o A*: CF = (Ce C)* = C* & C*,
in ./\/lffp which is the composition
m=A"or: C"@C*— (CeC)" = C".
It easily computed that m is the opposite of the convolution product, that

is m(c* ® d*) = c*d*, with (c*d", c) = (c*, c(2))(d*, c(1)). Now we claim that
we have a strong monoidal equivalence

(=), 00, p2) = (C(ML), @, k) = (A(MR)P, &P, k).
o is again the identity on k, and
w2 (C,D): D*®C* — (C® D)*
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in A(ML)°P is the inverse of the map ¢ defined above. It follows from
Proposition that (—)* induces a biequivalence

(=)™ counyCat = 4oueorCat.

We now from Proposition that AM!, )opCat is 2-isomorphic to AME) Cat.
Hence we have the following result.

Theorem 4.5. Let k be a commutative ring. We have a biequivalence

A(M)
cm)Lat — = Cat.

For a Q(Mi)%—category A, we provide the corresponding dual A(Mi)%—
category C. First we have to apply the duality functor (—)*, sending A
to A*, with (A*)., = Aj,. Then we apply the construction performed
in the proof of Proposition which sends A* to C, with Cy, = Aj ..
From Theorem we already know the dual k-linear category structure
on C. Each C;, = Aj , is a k-coalgebra, with opposite convolution as
multiplication, and 1,4, = €, , as unit element.

Let us also give a brief description of the inverse construction. Let (C, A, ¢)
be a dual Mi—category. The k-linear category structure on A has already
been given in the comments following Theorem Each Ay, = Cy , is a
k-coalgebra with comultiplication

Aa) = Z(a, cicj)a; ® aj,
,J
where ) . ¢; ® a; € Cyp ® Ay, is the dual basis of C .

T

Let C be a dual V-category. C'is called a dual Hopf V-category if there exist
morphisms Sz, : Cyz — Cpy in V such that

(28) May © (Coy ® Sey) © Daye = Ty O Eas

(29) my@ 0 (Sy@ ® Cy@) o A$7y7:ﬂ - 77%33 O&g-

Theorem 4.6. Let k be a commutative ring. In the biequivalence from
Theorem Hopf /\/l};-categom'es correspond to dual Hopf /\/l};-categom'es.

Proof. Assume that C' is a dual Hopf Mi—category with antipode S, and let
A be the corresponding Hopf Mi—category. We claim that T' defined by
Try = SZ,z D Agy = Ay
is an antipode for A. We have to show that holds. The first formula in
(51) reduces to
amTey(ag) = {a;1yz)ex,
in Ay, =C},, forallac A, . Forall c € C,,, we have that

(ayTay(a), o) = {(aq), ) (Tey(a), cay)
= {aqy, ¢y {a@); Syz(cay))
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= <a? Sy,w(c(l,y))c(2,y)> - <a7 1y,$><51a C>'
The second formula in is proved in a similar way. ([

5. HOPF CATEGORIES AND HOPF GROUP (CO)ALGEBRAS

Let (V,®, k) be a monoidal category. A group graded V-algebra consists of
a group G together with a family of objects A = {A, | 0 € G} in V and
morphisms
Mor: Ae @Ar = Agr s n: k= A
in V such that the following associativity and unit properties hold, for all
o,7,p € G:
Meor,p © (mU,T ® Ap) = Mgorp0© (AO' & mT,p);
Me,o © (7] & Aa) = Mge© (Acr ® 77) =A,.
Consider the case where V is the category of modules over a commutative
ring k, and let A = {A, | 0 € G} be a graded algebra. Then A = G,cqAs
is a G-graded algebra in the usual sense (see [22] for the general theory of
graded algebras), and is called a graded algebra in packed form. Graded
algebras can be organized into a 2-category ypgr.
A 1-cell f: (G,A) — (H, B) consists of a a group morphism f: G — H
together with a family of morphisms f, : A, — Byj() in V such that
fO’T O Mo,r = Mf(a),f(r) © (fa ® fT) and fe on=mn.
Let f,g : (G,A) — (H,B) be 1-cells; a 2-cell @ : f = g consists of a
family of morphisms o, : k — By()-1f(,) such that the following diagrams
commute:
9o—1,Qar

AaflT Bg(o)ilg(T) ®Bg(7)71f(7)
ao@fglfl

lmg(o)lg(r>,g<7>1f<f)

Mg(0)=1f(0),f (o)1 f(7)
By(o)=11(0) @ By(o)=1(r) 9(0)1f(7)

We have the dual notion of graded coalgebra. A group graded coalgebra in

V consists of a group G together with a family of objects C' = {C, | 0 € C}

in ¥V and morphisms

Apr: Cor 2 Co®Cr ;e Co— k

such that

(Ao’,‘r & Cp) o AO’T,p = (CU X AT,/J) o AO’,Tp
(e®Cp) oAy = (Co®e)oNge=Ch.
Let V = M, and suppose that G is a finite group. If C' is a G-graded

coalgebra, then ®,ccC, is a G-graded coalgebra in the sense of [21].
Graded coalgebras can be organized into a 2-category Vg.

A l-cell f: (G,C) — (H,D) is a morphism of graded coalgebras. This
consists of a a group morphism f : G — H together with a family of
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morphisms fy : Dy(,) — Cs such that (f5 ® fr) 0 Apo) (r) = Aoir © for
and co f. = ¢.

Now let f,g: C' — D be 1-cells. A 2-cell a: f — g consists of a family of
morphisms @, : Dys)-14(s) — k such that

(fomrr @ az) 0 Ap(o)=1(r), f(r)-19(r) = (A0 @ Gg=17) © Df(0)-1g(c),g(0)Lg(r)-

Proposition 5.1. Let V be a strict monoidal category. Then the 2-categories
Vg and yepgr are 2-isomorphic.

Proof. The proof is similar to the proof of Proposition We will describe
the 2-functor F' : Ygr and yopgr. Let (G,C) be a graded coalgebra, and
let F(G,C) = (G, A), with A, = C,-1. The multiplication map mg, :
Ay @P Ar — Agr in VP is given by A1 ;- 1Cr1,-1 = Cr1 @ Cpn in V.
Let f: (G,C) — (H,D) be a morphism of graded coalgebras. We define
F(f)y=9: F(G,C)=(G,A) — F(H,D) = (H, B) as follows: g(o) = o,
for all o € G, and g, : Ae = Byo) in VP is the map f,-1 : D)1 =
Bf(a) — Co.—l = AU in V.

Let f,f': (G,C) — (H,D) be morphisms of graded coalgebras, and let
a: f= f'bea2cellin Ygr. We have morphisms «, : Dygy-1f/(g) = k in
V, which are also morphisms a, : k — B /(o)1 f(0) 10 VP, defining a 2-cell
F(f) = F(f/) in yorgr. O

Proposition 5.2. Let V be a strict monoidal category. We have 2-functors
K : ygr— yCat and H : Vg—ﬂ’%.

Proof. Let A be a G-graded algebra. We define a V-category K(A) =
K(G, A) as follows. The underlying class is G, and K(A),, = Ay-1,. The
multiplication maps are

Mo, pr = Me—1p p=17

K(A)op=A,1,0 K(A)pr =A, 1, = K(A)or = Ap1,,

and the unit maps are n, =n: k= Ac = As .

Let f: (G,A) — (H,B) be a morphism of graded algebras. K(f) =g :
K(G,A) — K(H, B) is then defined as follows. g(o) = f(o), for all o € G,
and go.r = fo-17 0 K(A)or = Asm1r = K(B) f(0),1(r) = Bfo)-11(r)-

Now let a : f = f" be a 2-cell in ygr. We have morphisms a, : k —
Byo)-14(0) = K(B)g(0),f(o), and these also define a 2-cell g = ¢/ in yCat.
The 2-functor H : V& — V% is constructed in a similar way. Let us just
mention that, for a G-graded coalgebra C, H(C)or = Cy-1,. O

Let V be a braided (strict) monoidal category. We can consider graded
coalgebras in LA(V) and graded algebras in C()). A graded coalgebra in
A(V) is a graded coalgebra C' in V, such that every C, is an algebra in
V, and the comultiplication and counit morphisms A, . and ¢ are algebra
maps. Graded coalgebras in A(V) are known in the literature as semi-Hopf
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group coalgebras. They appeared in [27] (see also [28]), and a systematic
algebraic study was initiated in [30].

In a similar way, a graded algebra in C(V) is a graded algebra A in V
such that every A, is a coalgebra in V, and the multiplication and counit
morphisms m,  and 7 are coalgebra morphisms. In the literature, this is
also called a semi-Hopf group algebra.

This provides us with a new categorical interpretation of semi-Hopf group
algebras and coalgebras. We also obtain that semi-Hopf group algebras
(resp. coalgebras) can be organized into a 2-category c(v)8r (resp. AWV) gr).
Note that a different interpretation, where group algebras and coalgebras
appear as bialgebras in a suitable symmetric monoidal category was given
by the second author and De Lombaerde in [12].

Recall that a semi-Hopf group coalgebra C' is called a Hopf group coalgebra
if there exist morphisms S, : C,-1 — C, such that

Mg 0 (Co ®85) 00, -1 =My 0(Se ®@Co)oA,-1,=150¢.

A semi-Hopf group algebra A is called a Hopf group algebra if there exist
morphisms S, : A, — A,-1 such that

Mgo-10 (Ag ® S5) 0 Ag =M1, 0 (S5 ® Ag) 0 Ay =10 &,

Proposition 5.3. Let V be a braided strict monoidal category. We have
2-functors K : ¢co)gr — cv)Cat and K : A(V)g — A(V)%. The first
functor sends Hopf group algebras to Hopf V-categories, and the second one
sends Hopf group coalgebras to dual Hopf V-categories.

Proof. The first statement is an immediate corollary of Proposition[5.2] The
proof of the second statement is straightforward. Let A be a Hopf group
algebra. K(S)gr = S,-1, 1 K(A)gr = Ay-1;, = K(A)7o = A.-1, makes
K (A) into a Hopf V-category. O

6. HOPF CATEGORIES AND WEAK HOPF ALGEBRAS

Let A be a k-linear Hopf category, with |A| = X a finite set, and consider
A - ®I7yEXA:E,y-

We define a multiplication on A in the usual way: for h € A, , and k € A, ,,
the product of hk is the image of h® k under the map my .y 1 Az y @Ay —
Apw if y = 2z, and hk = 0 if y # 2. This multiplication is extended linearly
to the whole of A. Then A is a k-algebra with unit 1 =3 __y 1, where 1,
is the identity morphism = — .

Now we define A: A—>A® A, e: A=k, S: A— Ainsuch a way that
their restrictions to A, , are respectively A, , €, and Sy .

Proposition 6.1. Let A be a k-linear Hopf category, with |A| = X a finite
set. Then A = @y yexAzy is a weak Hopf algebra.
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Proof. We refer to [§] for the definition of a weak Hopf algebra. We compute

that
A =1y @1g =Y 1. L,
rzeX
and
1)@l lan®ley = Y 10L1,e1, = Y L0101, = (ARA)(A(1)),
z,yeX zeX

as needed. In a similar way, we show that
1(1) ® 1(1/)1(2) & 1(2/) = (A® A)(A(1)).

Let us now show that

€(hk‘l) = €(hk’(1))€(k}(2)l)
It suffices to show this for h € Ay, k € Ay, 1l € A,y Ity # ¢ or
z # 2/, then both sides of the equation are 0. Assume that y = ¢’ and
z = 2. From , it follows that e(hk))e(kyl) = e(h)e(ky)e(k)l) =
e(h)e(e(ky)k@)l) = e(h)e(kl) = e(hkl). Similar arguments show that

E(hkl) = E(hk(g))é‘(k(l)l)
This proves that A is a weak bialgebra. For h € A, ,, we compute that

e(h) =Y (e, 101 = (e, 1h) 1y = (g4 y, h)1s.
zeX

In a similar way, we show that e4(h) = (¢, hly)1, = (€24, h)1,. Now

(11))
h(1>5x,y(h<2>>!77x(6x,y(h)) = &i(h);

(12)
Sy (h@)hiz) = ny(eay(h)) = s(h),
and, finally,
Say(h1)h2)Sey(h(3)) = €y (h1)1ySzy (b)) = Szy(h).
U
Remark 6.2. Let G be a groupoid. Using Example[2.12] we obtain a k-linear

Hopf category. Then applying Proposition [6.1], we find a weak Hopf algebra,
which is precisely the groupoid algebra kG.

Now let C' be a dual k-linear Hopf category. Then every C, , is an algebra,

and we have k-linear maps Az . : Cp. — Cpy @ Cyy e 1 Cpp — k

and Sy, : Cy s — Cpy such that the following axioms are satisfied, for all

h,keCy,andl,me Cyy:

(30) Aauy(hay) @hay) = hay) @ Byuz(hey)
5x(h( )2z

(31) ) = hagez(hes) =h

(32) vyz(Pk) = haykay) @ heykey):
(33) ez(lm) = ex(l)ex(m);

(34) eyz(lzz) = loy® 1Ly
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(35) 5m(1z,x) = 1
(36) l(l,y)Sz,y(l(Q,y)) = Eac(l)l:v,y§
(37) Sy,x(l(l,y))l(2,y) = 5;,;([)1%:,;.

Cere 1,4 is the unit element of C, ,, and we used the Sweedler-Heyneman
notation

Agy,z(h) = hi1y) ® hiay).

Proposition 6.3. Let C' be a dual k-linear Hopf category, and assume that
|C| = X is finite. Then C = @y yexCyry is a weak Hopf algebra.

Proof. Being the direct product of a finite number of k-algebras, C is itself
a k-algebra, with unit 1 = Zz sex lz,z. We define a comultiplication on C

as follows:
= Z Azy,=(h)
yeX

for h € Cy .. It follows immediately from that A is coassociative. The
counit is defined by (h € Cy y):

_Jex(h) ifz=y
E(h)_{o if oy

We verify the left counit condition:

(31
(c® ) o A)(h) = 3~ el hiamy = 2o lhr.ay) oy B,
yeX

The right counit condition can be verified in a similar way, and we conclude
that C' is a coalgebra. It follows from and that A and e preserve
the multiplication. it follows from ([34] @ ) that

AD) =1y lg = D, liy®ly..
z,y,2€X
We now find easily that
Iy @1lglan®@lgy = Y Ly ®ly.ly, ® Ly

x,y:Z,“,UﬂUEX
= ) Ly®1,:®lu,=1381lg g,
I,y,Z,’U}EX

In a similar way, we find that 1(1) & 1(1/)1(2) & 1(2/) = 1(1) & 1(2) & 1(3). Now
take h, k,l € Cy 4.

kyl) = > (ki y)e(byl) = ex(hk m)ea(ke,mnl)
yeX

z(h)ex (b g))ex (k) = ex(h)ex(n(bi z))k@w)l)
x(h)sx(kl)sx(hkl) — e, (hkl).

€(hk(1)

~—
—~

3

=1

S
S



HOPF CATEGORIES 27

We conclude that
(38) E(hk‘(l))é‘(k}(g)l) = E(hk‘l),

if h,k,l € Cpp. If bkl € Oy, with y # x, then both sides of are zero.
So we can conclude that holds for all h,k,l € C. In a similar way, we
can show that

e(hk2)e(k@)l) = eDgop)@)(gof) @), (o' ) () (RRL),

for all h, k,l € C. This shows that C is a weak bialgebra.
Recall from [8] that the maps €5, e, : C — C are given by the formulas

es(h) = Le(hly) 5 eu(h) = e(Lnyh)L).

These maps can be easily computed: for h € C, ., we have

er(h) = Z e(Luph)loy = Z e(h)l,y = {ZZ/GX ex(M)lay if v =2

u,v,yeX yeX 0 if 7& z

In a similar way, we find that

e(h) = Zyex%(h)ly,r ifx ==z
o0 if v # 2

Now we define S : C — C as follows: the restriction of S to C 4 is Sy s,
and then we extend linearly. Then we have, for h € C, ,:

(S*C)(h) = Z Sya(h1y))h,y)-
yeX

If x # 2, then we find easily that (S C)(h) =0 = e5(h). If x = z, then we
find
(37)
($«O)MB S eu(h)1y = eu(h).
yeX

This shows that S * C = g,. In a similar way, we have that C' x S = ¢&;.
Finally we have that

(S * C * S)(h) = Z Su,ac(h(l,y)(l,u))h(l,y)(2,u)Sz,y(h(2,y))-
y,u€X

The terms on the right hand side are products of an element of C, ., an
element of Uy, and an element of C, ,. These products are zero if x # y of
z # u. Hence we find

(S*CxS8)(h) = S.2(h(2)1,2)P(1,2)2,2) S22 ((2,2))
&
= ex(h2))1e2S20(h20) = Sz,2(h) = S(h).

This proves that C satisfies all the axioms of a weak Hopf algebra, see [§]. O
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Remark 6.4. If A be a k-linear Hopf category, with |A| = X an infinite set,
then A = @, yex Az y is an algebra without unit, but with (idempotent) local
units. We believe that if A is a Hopf category and using similar constructions
as above, the associated algebra A can be endowed with the structure of a
weak multiplier Hopf algebra (see [29] and [6]), but we haven’t worked out
the details of this construction.

7. HOPF CATEGORIES AND DUOIDAL CATEGORIES

Let X be a set. We have seen in Section |1 that (M (X), e, J) is a monoidal
category. We will define a second monoidal structure on My(X), in such a
way that My(X) becomes a duoidal category (also called 2-monoidal cat-
egory) in the sense of [I]. We will follow the notation of [5], and we call
the black tensor product on My (X). The second tensor product is called
the white tensor product and is defined as follows. For M, N € My (X), let

(M © N)x,z = @yEXMx,y ® Nyvz’
The unit object for the white tensor product is I, defined by
key, ifz=y
Ix,y = .
0 ifx#y

We will simply write
Iy = kg,

where the Kronecker symbol 6, , stands formally for the element of the
identity matrix in the (z,y)-position. Let

T: I —J
be the natural inclusion. We compute that
(I o1)yy="Fkbypy®kbypy=Fkbpy= Iy,

hence [ o I = I, and we let

60: I —>Tel
be the identity map. Now we compute that

(J O J)ay = Prexker, @ke,y = Brexkzeyy = kXeqy.
We now define w: J©J — J. Forall z,y € X,
Way @ Drexkzegy — kegy, w%y(z a 2eqy) = Z Qe y.
zeX zeX

For M, N, P,Q € V(X) we have that

((M i N) © (P b Q))x,y = @ MI,Z ® Nx,z @ Pz,y ® Qz,y;
zeX

((M ® P) [ ] (N ® Q))x,y — @ Mz,u ® Pu,y &® Nm,'u ® Q’U,ya
u,veX
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and we define

CunNpQ: (MeN)®(PeQ)— (M®P)e(NGOQ)

as follows: for z,y € X, (v N,PQ,zy is the map switching the second and
third tensor factor, followed by the natural inclusion.

Theorem 7.1. Let X be a set. (My(X),®,1,0,J,6,w,7,() is a duoidal
category.

Proof. We have to show that the axioms in [5, Def. 1.1] are satisfied.
1) (J,w,7) is a monoid in (My(X),®,I).
Associativity: first compute that

(JOJOT)zy =k(X X X)ery = Pupvexk(u,v)egy,

and

(w(J ©w))( Za(uv)uvegﬁy Za(uv)uexy
Z Q(y,v)Cay = (w © J))(Z (y,v) (u7 v)efvay)'

Left unit property: we have to show that the diagram

JoOT x,
(J O ey —2202 (10 Ty
\ \sz’y
Jry

commutes, for all z,y € X. Observe that (J ©® ),y = @.exkes. ® kb, =
keyy = Jpy and (J © J)gy = kXezy. Now

wx,y((J © T)%y(aex,y) = wzy(ayesy) = aesy,

for all @ € k. The right unit property can be shown in a similar way.

2) (1,9, 7) is a comonoid in (My(X),e, J).

The coassociativity of § is clear, since § is the identity map. For the left
counit property: oberve that the diagram

I%y = kéxyy
5z,yl =
(JoT)z,y
Im,y = k‘&w _— (J ° I)x,y = k(ip’y

commutes: the three maps in the diagram are the identity map.
3) Verification of the associativity and unitality axioms [5, 1.6-7] is obvious
and is left to the reader. O

Recall the following definition from [I, Def. 6.25] (see also [5, Def. 1.2]).
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Definition 7.2. Let (M,®,1,e,J,d,w,7,() be a duoidal category. A bi-
monoid is an object A, together with an algebra structure (u,n) in (M, ®, )
and a coalgebra structure (A, e) in (M, e, J) subject to the compatibility
conditions

(39) Aop = (pep)ogo(AeA);
(40) wo(e®e) = cop

(41) (nem)od = Ao

(42) gon = T.

Theorem 7.3. Let X be a set, and let A € My(X). We have a bijective
correspondence between bimonoid structures on A over the duoidal category
(Mp(X),,1,0,J,0,w,71,() from Theorem and C(My)-category struc-

tures on A.

Proof. First let A be a bimonoid. A has an algebra structure (u,n) on
(Mp(X),®,I). Consider the (z,y)-component of the multiplication map
w: A®A— A, namely

My - @uEXAx,u & Au,y — Am,ya
and let p, ., be the composition
Mgy © iy A:L’,z ® Az,y — @UEXAJLU ® A%y - va?ﬁ

where i, is the natural inclusion. Also consider the (z, z)-component of the
unit map n: I — A, namely 0, = 14 : k — Az . Now it is easy to see
that are satisfied, so that A becomes a k-linear category.

A has a coalgebra structure (A,e) on (Mg(X),e,J). Consider the (x,y)-
component of the comultiplication A : A — A e A and of the counit
e: A — J. This gives k-linear maps Ay, @ Azy — Azy ® Azy and
€y Azy — k making A, , into a k-coalgebra.

Now we write the (z,y)-component of and as commutative dia-
grams. This gives us

K,y Az y

EBZACC7Z & Az,y

A$7y Ax7y ® Ax7y

@zAz,z(g)Az,yl THI,y@IJ»w,y

Coy

®zAx,z & Ax,z & Az,y & Az,y @u,vAa:,u & Au,y & Ax,v & Av,y

and
Dr€2,2Q€2,y

@zAx,z & Az,y @zkex,z K eyy = @zk‘zegp’y

#-r,yl iw

Ex,y
Aa:,y ke%y

Evaluating the two diagrams at a @b € A, , ® A, ,, we find that

Ax,y(ab) = a(l)b(l) X a(Q)b(Q) and sgw(ab) = sx,z(a)s%z(b).
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Now we write the (x,z)-component of and as commutative dia-
grams. This gives

k e Ay and k —% > Ay

RN
k

Evaluating these diagrams at 1, we find that A, ,(1;) = 1, ® 1, and
ex2(1z) = 1, and we conclude that A is a C(Mj)-category.

Conversely, let A be a C(Mj)-category. Define p: AA— A, n: [ — A,
A: A—AeAande: A— Jasfollows. tpy = >, fauy: PuexAzu®
Auy = Azys Ny = 0if  # y and 1, = 7,; the components of A and €
are just A, , and €, ,. Straightforward computations show that this turns
A into a bimonoid. It is clear that these two operations are inverses. This
completes the proof. O

Linearization and the duoidal category of spans. We have seen in
Theorem that we can associate a duoidal category My (X) to a set X.
In [T 5], two other classes of duoidal categories are investigated, namely the
category span(X ) consisting of spans, and the category rMp of bimodules
over a commutative k-algebra R. We will now discuss how these three classes
of examples are related. To this end, we need to give alternative descriptions
of My(X) and span(X).

As we have seen in Example every set X carries a unique comonoid
structure in Sets. A right X-coaction on a set V' consists of amap p: V —
V x X of the form p(v) = (v, s(v)), where s : V — X is a function. So right
X-coactions on V correspond bijectively to XV. In a similar way, giving a
two-sided coaction of X on V amounts to giving two functions s,t: V — X,
which means precisely that (V,, s) is a span, see [5, Sec. 4.2]. Morphisms of
spans correspond to bicomodule maps, and we conclude that the categories
XSets® and span(X) are isomorphic. The white product of two spans V/
and W is

VoW={vw) eV xW]|s(v)=tw)}

is precisely the cocarthesian product V x*WW. Now observe that the category
XSets¥ is isomorphic to Sets® *~X. The black product is

VeW ={(v,w) e VxW|s()=s(w), tlv)=1t(w)}

and this is the cocarthesian product V x*X*X 1. The white unit object is
X, and the black unit object is X x X.

A similar description applies to My(X). kX is a coalgebra, and we have
isomorphisms of categories

Mi(X) 2 FXMEX 22 My,
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An object (My,y)zyex corresponds to M = @y yex My, with left and right
kX-coaction given by the formulas

A(m) =z @m; p(m) =m®ey,
for m € M, ,, extended linearly. The black tensor product in My(X) is
precisely the cotensor product over k(X x X), and the white one is the
cotensor product over kX.
The linearization functor L : Sets — My, is strongly monoidal, sends X to

the grouplike coalgebra kX and a set V with a two-sided X-coaction to the
kX-bicomodule kV. We find the following result.

Proposition 7.4. The linearization functor induces a functor L : span(X) —
M (X)) preserving the black and white tensor products.

This construction can be generalized, replacing kX by a cocommutative
coalgebra C'. We have to assume that the cotensor product is associative,
which can be done by requiring that k& is a field, or else that &k is a commu-
tative ring and that C is finitely generated and projective over k. Then the
category CM% = Mko®o of C-bicomodules is duoidal, with the cotensor
product over C' and C' ® C' as the white and black tensor product. This
brings us back to the second example of duoidal category studied in [Tl 5].
For a commutative k-algebra A, the category aM a4 = Muga is a duoidal
category, with the tensor products over A and A® A as the black and white
tensor product. This is precisely the dual construction.

Generalized Hopf monoids in monoidal bicategories. Now we focus
attention to the recent work by Bohm and Lack [7] on generalized Hopf
monoids in monoidal bicategories.

It is well-known that the category of endomorphisms of an object of a bicat-
egory is a monoidal category. It was observed in [24] that, in a similar way,
duoidal categories arise as the category of endomorphisms in a monoidal
bicategory of a pseudomonoid whose multiplication 1-cell and unit 1-cell
have a right adjoint (such an object is known as a map-monoidale). In this
case, the second monoidal structure is obtained using a convolution prod-
uct. Consider the monoidal bicategory of free k-coalgebras, bicomodules
and bicomodule maps, with the cotensor product as horizontal composition,
the opposite composition as vertical composition and the k-tensor product
as monoidal product. kX is a map-monoidale in this monoidal bicategory.
Hence the category My, (X) = *X MIEX of kX-bicomodules is the category of
endomorphisms over a map-monoidale, so it can be endowed with a duoidal
structure. This duoidal structure coincides with the one described above,
the black monoidal product being the convolution product. It also follows
from [24] that A is a bimonoid over the duoidal endohom category My (X)
if and only if it is a monoidal comonad on kX in the monoidal bicategory
described above, hence it induces a monoidal comonad on My (X).
Furthermore, Bohm and Lack provide equivalent conditions for the bimonoid
A in the duoidal endohom category to have an antipode (i.e. to be a Hopf
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monoid), in terms of a fundamental theorem of Hopf modules (see also our
Section E[) and in terms of the associated monoidal comonad to be a Hopf
(co)monad. In particular, this leads us to the following result.

Theorem 7.5. Let X be a set, and let A € My(X). We have a bijec-
tive correspondence between Hopf monoid structures on A (in the sense of
[7]) over the duoidal category (My(X),®,1,,J,6,w,T,¢) from Theorem|7.]]
and Hopf My-category structures on A. In particular, if A is Hopf My-
category, then this induces a Hopf monad on My (X).

Proof. From the discussion above, we already know that the structure of
an C(Mj)-category on A corresponds to the structure of a bimonoid in the
duoidal category My (X). Hence it only remains to compare the antipode
axioms for Hopf categories and with the antipode axioms of [7,
Theorem 7.2]. We leave out the details, but remark that the monoidal
bicategory of bicomodules over free coalgebras has duals. Given a kX-kY
bicomodule M = @, )exxy Mz y, then M~ = MP = &, ey xx My 1s a
kY -kX bicomodule. Furthermore, the 2-cell ¢ in [7] should in our setting
be interpreted as the inclusion map Az, ® Ay — GyexAzy @ Ay 4. O

8. HOPF CATEGORIES AND MORITA CONTEXTS
Let k£ be a commutative ring, and V = My, the category of k-modules.

Definition 8.1. A Morita context consists of the following data:

(1) a class X;

(2) Ay is a k-algebra, for all z € X;

(3) Az, is an (Ag 4, Ay y)-bimodule, for all z,y € X;

(4) Myy,z: Ary®a,, Ay — Az is an (Az s, Az 2)-bimodule map,
satsifying the following conditions:

(1) Moy Aze @4,, Acy = Azy and Mayy 0 Aey @4, , Ayy = Azy

are the canonical isomorphisms;
(2) the associativity condition is satisfied, for all x,y,z,u € X

(43) ma;y,u o (Al',y ®Ay,y my,z,u) = m$7zau o (mmvyvz ®Az,z AZ,U,)'

For a € Az, and b € A, ., we will write My, .(a ®4,, n) = ab.

Morita contexts can be organized into a 2-category yMor. Before we describe
the 1-cells, we recall the following result. Let f : A — B be a morphism
of k-algebras, and consider M, N € M4, M', N' € Mp, and k-linear maps
g: M — M and h: N — N’ such that g(ma) = g(m)f(a) and h(an) =
f(a)h(n), for all a € A, m € M and n € N. Then we have a well-defined

map
gRfh: M@s N = M @ N', (g h)(m®an)=g(m)®@p h(n).

A l-cell f: A — Bin pMor consists of f: X — Y, and maps f,: Az y —
Bf(x),f(y) such that
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e cvery f, ., is an algebra map;
o fay(dad”) = fra(d)froy(a)fyy(a”), for all d'inAy ,, a € Ay y and
a’ e Ay
® foy©Mayz=Mp) f(y),5() © (foy Oy, fy.2)-
For two given 1-cells f,g: A — B, a 2-cell a: f = g consists of a family
of elements o, € By(y) () indexed by x such that

Mg(2),9(y).f () (92.5(Q) @By o) @) = Mg(a), 1(2).£(9) (Qa OBy o) foy (@),
forall z,y € X and a € A, ,,.

Let A be a Morita context, and take x # y € X. Take p,r € A,, and
q € Ay . It follows from that

Mayo(P @4y, O = Pyay(d ., 7)-
It follows that (Az., Ayy, Azys Ay May.e, Myzy) is a Morita context. In

particular, Morita contexts with a pair as underlying class are Morita con-
texts in the classical sense.

Theorem 8.2. The 2-categories aq, Cat and yMor are isomorphic.

Proof. (sketch) Let A be a k-linear category, with underlying class X. It is
clear that A, , is a k-algebra, and that A, , is an (Ag 4, Ay 4)-bimodule, for
all z,y € X. Take a € Ayy, b€ Ayy and ¢ € Ay .. From (1)), it follows that
May,2(ab @ ¢) = myy .(a @ be), so we have a well-defined map

mxyy’z : Az7y ®Ay,y Ay7z - Ax’z, mﬂv,?hz(a ®Ay,y C) = mx7y7z(a ® C)'

From , it follows that 7, .(1y ®a,, ¢) = My,.(1, ® c) = ¢, so that
My~ 18 the canonical isomorphism A, ®a, , A, . = Ay, .. It is easy to
verify that the associativity axiom is satisfied, and it follows that A is
a Morita X-context.

Conversely, let A be a Morita context with underlying class X. Define my , .
as the composition of m;, . and the canonical surjection A,, ® A,. —
Agy ®4,, Ay Tt is a straightforward verification to check that A is k-
linear category.

It is clear that these two constructions are inverses, and this defines 2-
functors between our two 2-categories at the level of O-cells. We leave it to
the reader that we have a one-to-one correspondence between 1-cells and
2-cells in aq, Cat and Mor. Ul

Theorem 8.3. Let A be a k-linear category with underlying class X, and
consider the corresponding Morita context. The following statements are
equivalent.

(1) myy. . is surjective, for all z,y,z € X

(2) Mgy, is surjective, for all x,y € X;

(3) Mg ye is bijective, for all z,y € X ;

(4) Mgy, . is bijective, for all x,y,z € X.
A is called strict if these four equivalent conditions are satisfied.
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Proof. The implications 4) = 1) = 2) are obvious.

2) = 3). If myy, is surjective, then m,, , is also surjective. We have
seen that (Ag 2, Ayy, Ay, Ayzs May 2, My 2y) is a Morita context, hence
surjectivity of m, , . implies injectivity, by a classical property of Morita
contexts, see [3].

3) = 4). For all z,y € X, we have that m,,, and M, , are bijective (by
definition), and M, ., is bijective by assumption. It follows from that
My y, 2 © (Ax,y ®Ay7y my,z,z) = Mgz © (mx,y,az ®A1,z Az,z)-

The right hand side is invertible, and therefore My . o (Ag,y ®a,., My z,2)
is also invertible. This implies that m;, . has a right inverse, and that
Az y ®a,, My has a left inverse. Having a right inverse, my y . is surjec-

tive, for all z,y,z € X.

It also follows that Ay, ®a,, Aey ®a,, Mye. and My, Qa,, Mye.
have a left inverse, because T, ;, is bijective. Let f be the left inverse
of My 2y ®a,, My, and take a € Kermy ;.. My ., is surjective, hence
there exists § € Ay, ®4,, Azy such that my ., (8) = 1,. Now

B ®a,, o= (f o (Myzy ®a,, my,x,Z))(/B ®a,, @) =0,
and
0 = myaxvy(ﬂ) ®Ay,y Q= 1y ®Ayvy o
in Ayy ®a,, Aye ®a,, Az = Ays @a,, Az, and, finally, o = 0. We
conclude that m, ; . is injective. O

Example 8.4. The category A of k-progenerators, is a strict k-linear cat-
egory. For two finitely generated projective k-modules P and (), we have
that Apg = Hom(Q, P), and mpg p : Apg ® Agp — App is given by
composition: mpg p(f ® g) = fog. We have to show that mpg p is sur-
jective.
@ is a generator of y M, so there exist ¢; € @ and ¢ € Q* such that
2ilais i) = 1.
P is finitely generated projective, so there exist p; € P and p;-‘ € P* such
that p = Zj (p},p)pj, for all p € P. Now consider

fij: @ =P 5 fij(e) ={q,)pj;

gij: P—Q ;i gij(p) = (P}, p)a-
Now

mpo.p(Y_ fij © 9i)(p) = Y (P} p)4} 4i)p; = P,
i, 2%

hence mP7Q7P(Zi’j fij ® gij) = P and mpg p is surjective.
Example 8.5. Let A be a G-graded k-algebra, and consider the correspond-
ing k-linear category K (A) (see Proposition[5.2). K (A) is strict if and only if
the multiplication maps Agj-1j, ® Aj—1, — A, are surjective, for all g,h € G.

This is equivalent to surjectivity of Aj-1 ® Ay — A, for all g € G. This
is one of the equivalent definitions of a strongly graded k-algebra, see for
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example [22]. We conclude that K(A) is strict if and only if A is a strongly
graded k-algebra.

Now assume that A is a C(My)-category. It follows from the axioms that
every Ay, is a bialgebra and that every A, , is an (Ag s, Ay, )-bimodule
coalgebra. In this case the induction functors A;, ® —: 4, M — 4, M
are comonoidal.

Example 8.6. Let H be Hopf algebra with bijective antipode S, and let
A be a faithfully flat right H-Galois object. In [23], a new Hopf algebra L
is constructed in such a way that A is a faitfhully flat left L-Galois object,
and even an (L, H)-bigalois object. A°P is an (H, L)-bigalois object (see [23,
Remark 4.4]). The left H-coaction on A°P is the following:

)\(a) = S_l(a[l]) X ajo)-

We now have a dual A(Mp)-category A with underlying class {x, y} defined
as follows:

Ape=H; Ayy=1L; Apy=A; Ay, = A",
A is even a dual Hopf category; the antipode maps are the following: Sy :
H — H, S, : L — L and the identity A, , = A — A, , = A°P.
Now let H be finitely generated and projective; then A and L are also
finitely generated and projective, and the dual category of A is an example
of a k-linear Hopf category.

9. HOPF MODULES AND THE FUNDAMENTAL THEOREM

Let V be a strict monoidal category with equalizers, and let A be a C(V)-
category, with underlying class |A| = X. Assume that M € V(X), with the
following additional structure:
e M € V, in the sense of Definition (3.1, with structure morphisms
wz,y,z : Mz,y & Ay,z — Mm,z;
e M € VA, that is, M is a right comodule over A considered as a coal-
gebra in V(X); this means that every M, , is a right A, ,-comodule,
with coaction pg @ Mgy — Mgy @ Ay y.

Recall that A e A is also a V-category. M e A € V44, with structure maps

d}i\{y.?? = (u)x,y,z ® mxyyvz) o (M.’Ly ® CAm,yvAy,z ® Ay»z)'
M is called a Hopf module if the compatibility relation

(44) p[L’,Z © ¢$7y,2 = wljﬂ\{y.,? o (pib»y ® Ay’z)

holds for all x,y,z € X. A morphism between Hopf modules is a morphism
in V that is a morphism in V4 and V4. The category of Hopf modules is
denoted V(X)4.

We introduce the category D(X) (D stands for “diagonal”). Its objects are
families of objects in V indexed by X, and a morphism N — N’ consists of
a family of morphisms N, — N/ in V.
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Proposition 9.1. We have a pair of adjoint functors (F,G) between D(X)
and V(X)4.

Proof. We define a functor F': D(X) — V(X)4 as follows. For N € D(X),
let F(N) € V(X)4 be given by the data

F(N)ac,y = Nac & A:v,y; ww,y,z = Nac & My y 2y Pry = Nx & Aa},y-

For f: N — N'in D(X), let F(f)zy = fz ® Asz,y. Verification of further
details is straightforward.

Now we define G : V(X)4 — D(X). Let M € V(X)4. M, is a right
Ay -module, for every x € X, and we define G(M) = M4 as follows:

G(M)y = MO = Mo,
the equalizer of the parallel morphisms py 5, My @0y : My o — My @Ay 2.

For g: M — M'in V(X)4, G(g) = g°°* is defined as follows: G(g), = ¢4
is the unique morphism in ¥V making the diagram

A . Mz,z@ﬁX
[¢0)
MCE ngx MLL‘,I‘ ® A.Z’7$
Px,x
JigeoA fmi J{fm,x(@Am
/VCOA . / M;,z®77X ,
M x Mx,m ; Mx,x ® AIJ
Pz,x
coA

commutative. The existence and uniqueness of g is guaranteed by the
universal property of equalizers.

Next we describe the unit and the counit of the adjunction. For N € D(X),
the unit ny : N ® GF(N) has X component ¥ : N, — GF(N), =

(N, ® Ax,m)COAZ»I, the unique morphism in V such that

xT

45)  ionY =Ny @ng: Ny = (Np ® Apa) " = Ny ® Ay
For M € V(X)4, the (z,y)-component of eM : FG(M) — M is
M =y o (i®@Apy): FG(M)yy = MO Ay y — My,
In order to show that (F,G) is an adjoint pair, we have verify that
F(N) =™ o P(pN) and G(M) = G(epr) o n&M,
for all N € D(X) and M € V(X)4. Now

2N 0 FN)ay = (No ® M) © (1 © Asy) 0 () © Asy)
- (Nx ® mxvxvy) © (Nx @ Mz & Aﬂ?,y) =N, ® AL?J = F(N)J:,ya
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proving the first formula. For the second formula, we consider the diagram

McoA
T
QM) MﬂgOA@Wz
Nz
)
(MmcoA ® 143:’2)COAI,I MJC:OA ® Aw,x
(i®Az,z)60Az’I li(@Aac,m
Mg ® Ag g)Aes My, ® A
( :r,x® z,:p) ’ x,x® T, T
oo iw
MeeA - M,

The commutativity of the triangle follows from the definition of nf (M); the
commutativity of the two squares follows from the definition of G at the
level of morphisms. Now

wx,z,x © (Z & A:Jc,x) © (Mg(c:OA & nx) = ¢9€,I~’E © (Mw,r & 771) o1 =1,

and it follows from the uniqueness in the universal property of equalizers that
the vertical composition in the diagram is the identity on M4 = G(M),;
this vertical composition is the x-component of the right hand side in the
second formula. O

Let A be a C(V)-category, with underlying class |A| = X. For all z,y,z € X,
we consider the canonical map

can;y = M2y @A) 0 (Arz @ Agy)t Az ® Agy = Az y ® Ay y.

With respect to the observations made at the end of Section[7], the following
theorem should be compared to [7, Theorem 7.14].

Theorem 9.2. (Fundamental Theorem for Hopf Modules) Let V be
a strict braided monoidal category with equalizers. For a C(V)-category A
with underlying class X, the following assertions are equivalent.
(1) A is a Hopf V-category;
(2) the pair of adjoint functors (F,G) from Proposition is a pair of
inverse equivalences between the categories D(X) and V(X)4;
(3) the functor G from Proposition is fully faithful;
(4) canj , is an isomorphism, for all x,y,z € X;
(5) canf, has a left inverse fr, and caniy is an isomorphism, with
inverse gz, for all x,y € X.

Proof. (1) = (2). Part 1. ™ has an inverse o™, for all M € V(X)4.
We first show that the morphism
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satisfies the equality
(46) px,:(; o ’}/Z',y = (Ma:,x ® T]x) © ’YI,.Z"

pm,x o 79079 = px,x ° /liz)xzy’x © (Mxvy ® Sﬁf,y) ° pxzy

(44)
! (w%y,x 0y mz,y,z) o (Mﬂﬁ,y b2y CAz y,Ayw ® Ay,z) © (p:v,y 029 Ay,z)

0 (Myy ® Szy) © pay

© (Vaye ® Maya) 0 (Mey @ ca,,a,. @ Ayaz)
o (May ® Azy @ ca,,,a,.) 0 (Pay @ Szy @ Szy)
0 (Myy ® DNgy) 0 pay

= (w:my,x & Am,z) © (Mx,y R Ay ® mx,yﬂ&) ° (Ma:,y ® cAW@Ay’I’Ay’””)
0 (Myy ® Ay ® Szy ® Szy) © P

D o ® Ara) © (Mo @, 1.,) © (Mg @ M © Ay)

(11) o (Mx,y & Ax,y X Sx,y ® Sﬂﬁ,y) °© (Mx7y ® Ax’y ® Ar’y) ° pi’y

(Voo @ Apz) 0 (May @ ca,,.a,,) 0 (Mey ®@ns ® Ayz)
0 (Myy ® €zy ® Sgy) © pivy
= (Ve @ Azz) 0 (Myy ® Ayy @12) © (M ® Szy) 0 pay
= (May®n2)0Yrya o (Muy® Sey) o pry = (Mpe ®ne) 0 Vo
At (%) we used the naturality of ¢ resulting in the commutative diagram

CAg,y®Ay,z, Ay,

mz,yyz®Ay,zi lAy,z‘@mz,y,z

cAz,z JAy,x

Ax,x b2y Ay,x

Ay,x b2y Ax,ac

From and the universal property of equalizers, it follows that there is
a unique morphism 7, , : M, — M4 such that i 0, = V4.
Now we are ready to define o™ : M — FG(M). The (z,y)-component is

ot = (o ® Auy) 0 pay t May — MO @ Ayy,.

6]\14 o aM = 1j}m7x7y © (Z ® A-'Eyy) o (’7x,y ® Aﬂ?,y) o px,y
wiy@,y °© (Mx7y ® Sx7y ® Ax7y) © piyy
Vg © (May @1my) 0 (Myy ® €xy) © pry = My y.

The proof of the fact that o™ is also a left inverse of e is more involved.
We first compute

Py © Yy © (i® Ar,y) : MagOA @ Agy = Myy @ Ay y.

=l

Pz,y © wx,x,y o (Z & Ax,y)

IE

,,,,,

© (Px,x ® Ax,y) o(i® Ax,y)
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(¢x,:v,y & Mx,m,y) © (Mz,:p Q@ CAp p,Agy @ Az,y)
0 (Myz @1 @ Agy)o (i @ Ay y)
Yz @ My zy) o (Mpa ® Azy @ne @ Agy) 0 (1@ Agy)
A7) = (Yray® Azy) o (i@ Agy).

Our next step is to compute

i o :)%,y © wa;,;c,y o (Z & A:v,y)
Q;Z)x,y,m © (vay ® vay) © pl,y © /llz)x:xvy ° (Z ® szy)

1i .

Vayz © (May @ Suy) 0 (Yr2,y ® Azy) o (1 ® Agy)

wgvﬂfvy,x 0 (Myy ® Ayy ®@ Say) 0 (My.p ® Dy y) 0 (1 ® Agy)
(11)

V2,00 (Mg ®nz) 0 (Myp ®€gy) 0 (1 ® Agy)
I ®€Egy =10 (MQC:OA ® Exy)-

The universal property of equalizers tells us that there is a unique f : M§°A®
Ayy — M4 such that i o f =i ® e,,. This implies that

(48) Yoy © Veay © (i® Ar,y) = M;:OA @ Eg,y-
Finally
oy © €nty = oy ® Auy) © Pry © Yoy © (i@ Avy)

- (:Ya:,y ® A:c,y) © (wx,a:,y & Am,y) S (Z ® Ax,y)
4: (%,y ® Az,y) o Wx,z,y ® Am,y) o(i® Ax,y ® Ax,y)) 0 (MafOA ® Aw,y)
(MA@ 0y ® Apy) o (MO @ Ayy) = M

Part 2. n has an inverse 8V, for all N € D(X).
The z-component of AV is

»Biv = (N ®egg)oi: (N ® Ax7x)C0Az,z —~ N,

fes

It is easy to see that
/8313\[ ° 773va = (N ®égz)0io ni:v@(Nx ® €,0) © (Nz @ 1)) = Ny.

The universal property of the equalizer entails that there is only one endo-
morphism f of (N; ® Ax,x)COAxvx such that 7 o f = 7, namely the identity.
Now
ionY o YN, ® na) o (Ny ® e0) o
(Nz ReEzz ® Am,x) © (Na: ® Am,x & 77:5) o1
= (Nas QEzra ® Aa:,;v) © (Nz ® Am,z) 01 =1,

so it follows that nY o BY = (N, ® A, ;).

(2) = (3) is obvious.
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(3) = (4). For every z € X, consider the object M* € V(X) given by M; =
Azy @ Agy. The structure morphisms p7 , = A,y ® Ay : M7 ® Ay and
w;,y,u = (mZ,yﬂl ® mx,y,u) © (Azay ® CAz,yyAy,u ® Ayau) © (M;,y @ Ayau)
M;,y ® Ay,u — Miu
make M? into an object of V(X )ﬁ. Let us verify that the compatibility
relation holds. We compute both sides of the equation, and see that
they are equal.
pi?’u °© ¢;1y7u = (Az7u ® szu) 0 (mz7y7u ® mx7y7u) o (szy ® CAz,y:Ay,u ® Ayzu)
0 (Azy ® Azy ® Ayy)
= (Mzyu ®Mayu @ Mayu) 0 (Azy @ Ay ® Agy ®ca, A, © Ayu)
0 (Azy ® Ayu ® Dgy ® Ayy) o (Azy ®ca, 4, © Ayu)
0 (Azy ® Azy ® Ayy)
= (Meyu @ Mayu @ Mayu) 0 (Azy @ Ay ® Az y ®ca, A, © Ayu)
0 (Azy ® €Ay y@As Ay @ Ay @ Ayu) 0 (Azy @ Dgy ® Ay ® Ayu)
0 (Azy ® Azy ® Ay)
= (mz,y,u ® mx,y,u ® mx,y,u) o (Azay ® CAz,y»Ay,u ® CAz,yyAy,u ® Ayvu)
0 (Azy ® Agy ® Ay, Ay, © Ayu ® Ayu) 0 (Azy @ Dgy ® A;,u);
( ;7y7u ® mxayzu) © (Az’y ® Axay ® CACC,ZHAZI,U ® Ayvu) © (pazc,y ® Ayyu)
= (Mzyu @ Mayu @ Mayu) o (Aey ®ca, 4, @ Ayu @ Agy @ Ayu)
0 (Azy ® Agy ® Dy ® Agy @ Ay )
o (Azy ® Azy ® CAg Ay @ Ayu) o (Azy @ Dgy @ Ay )
= (Mzyu @ Mayu @ Mayu) 0 (Aey ®ca, 4, @ Ayu @ Agy ® Ayu)
© (AZ:?J ® Agj,y ® cA:t,yyAy,u(@Ay,u ® Aym)
0 (Azy ® Ay ® Azy @ Dyu @ Ayu) 0 (Azy @ Dgy @ Ay )
= (mz,y,u ® mz,y,u ® mx,y,u) o (szy ® CAz,yyAy,u ® cAz,yyAy,u ® Ayvu)
° (AZ,?J ® Azzy ® CAx,yvAy,u ® Ayzu ® Ayau) © (Azzy ® A‘r’y ® A22J7U)
Consider the morphism f = A, ; @y Azz = Az ® Az = M . Since

Pi,x © f = (Az,z & Aw,z) o (Az,m & 77:5,:1:) = (Az,x Q Nzx @ 772)
(AZ,J: & Ax,x & nx) © (Az,ac & nx) = (M;,z ® 7795) © f?

there exists a unique f: Asp — M;COA such that 7 o f = f. f is invertible,
with inverse g = (A, 4 ® €5 4) o i. Indeed,

go f = (Az,a: & Em,z) o f = (Az,:v 0y Em,:c) o (Az,z X nx,x) = Az,ac-
We also have that
iofog = ng: (Az,x®77x,z)o(14z,m®5m,x) o1
= (Az,x R Epa @ Am,x) o (Az,:r; X Ax,x X 7790) o1
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= (A2 ®era ®Agp) o (A ® Do) 0i =1,

and it follows from the uniqueness in the universal property of equalizers
that fog= MjCOA. We know by assumption that

€2y = Vi, 0 (i ®Agy) s MY — Ay — M7,
is an isomorphism. It follows that
€2y © (F® Asy) = (Mamy @ Mazy) 0 (Asp ® ChyaAny ® Azy)

0 (Aa @ Apy @Ay y) 0 (1 @ Agy) o (f @ Asy)
= (Mewy @Megy) o (Are @ ca,, i, @ Asy)

0 (Arp @ A @ Duy) © (Ape @ Mww @ Agy)
= (Megy @Megy) o (Azz ®ca, 4., @ Azy)

0 (Apa ®Noa ® Agy ® Agy) 0 (Aze ® Agy)

(Mg @Magzy) 0 (Are @ Ay @1y @ Az y) 0 (Ass @ Ay y)

= (Meay @ Agy) 0 (Azp ® Agy) = cang

is an isomorphism.
(4) = (5) is obvious.

(5) = (1).
We define the antipode as follows:
Sey = (Ay,x ® 595,3/) O Gx,y © (ny ® Az,y)-

We have to show that the equations (11{12)) are satisfied. To this end, we
first need some auxiliary formulas. Composing the equality

(Mayy @ Agy) 0 (Agy @ canf )
(Mayy ® Azy) © (Aey @ Myay @ Agy) 0 (Azy © Ayz 0 Agy)
= (Maay ® Azy) © (Maye ® Asy ® Azy) 0 (Azy @ AyzoDgy)

_ T
- Can:p,y o (mx,yﬂﬁ ® Aw,y)

to the left with f,, and to the right with A, , ® g, we find that

(49) fay o (Mayy ® Azy) = (Meye ® Azy) 0 (Azy @ gay)-
Composing the equality

(cani’é’y ® Az y) o (Aye @ Aszy)
Myay ® Aey ® Asy) 0 (Aya @ Doy @ Azy) 0 (Aye @ Agy)
Myzy ® Azy @ Agy) 0 (Aya ® Azy @ Agy) 0 (Ayz ® Azy)
Ayy @ Azy) o (Myay @ Azy) 0 (Aye @ Agy)
Ayy @Az y)o0 can%y

(
(
(
(
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to the left and to the right with g, ,, we find that

Mo 0 Exy = (Azz ® Exy) © (e ® Azy)
(A zz, ® 59:,3/) ° fayo Cang,y o (N ® Ax,y)
(Aza, ® €xy) © fay © (Maay ® Azy) © (Ase @ Day) 0 (11s ® Asy)
= (Azz, ®eay) © fay 0 (Maay ® Azy) 0 (e ® Azy @ Agy) 0 Agy
(A
(

vz, ®€xy) O foy © (Mazy ® Azy) 0 (Azy @1y ® Azy) 0 Agy
Age, @ €zy) 0 (Maya @ Agy) © (Azy ® gay)
0 (Agy @My ® Agy) 0 Dy y
= Maya 0 (Azy @ Spy) 0 Agy,
and this shows that holds.

Ny CExy = (Ay,y @ 5w,y) © (ny ® Ay y)

(Ayy ®ezy) 0 Cang,y O Guy © (My ® Azy)

= (Ay,y ® gw,y) © (my,w,y ® Az ) (A gz @ Ay y) O ggy © (ny ® Ax,y)
o

E

= Myayo (Ays ®Azy ®eg y) (Aye ® Dy y) 0 gay o (My @ Azy)
o e (Ayz ®€zy ® Azy) 0 (Aye ® Dy y) 0 gay 0 (My ® Azy)
= Myay o (Ays ey ® Azy) 0 (gay @ Azy)
o(Ayy ® Az y) o (ny @ Azy)
My,z,y 0 (Aya @€ay @ Azy) © (Gay ® Azy) 0 (Ny ® Azy @ Agy) 0 Ay
My,zy © (Szy @ Azy) 0 Ay,
and this shows that holds. ([

Remarks 9.3. 1) The implication (1) = (4) can easily be proved directly: it
is easily verified that

(cang y) = My 0 Azy) 0 (Ary @ Szy @ Azy) o (Azy @ Az y).

2) It follows from the Theorem that a Hopf module over a Hopf category
is isomorphic to a free Hopf module, that is a Hopf module in the image of
the functor G. This result is known in the literature as the Fundamental
Theorem for Hopf modules. Its original form (in the case where V is de
category of vector spaces and X is a singleton) it is due to Larson and
Sweedler [1§], see also [25, Theorem 1.1]. For the case where V is an arbitrary
braided monoidal category with equalizers and X is a singleton, see [26,
Theorem 3.4] and [19, Theorem 1.4].

1

Let us now proceed to some applications of the Fundamental Theorem. We
restrict attention to the case where V is the category Mi of finitely gen-
erated projective modules over a commutative ring & (or finite dimensional
vector spaces over a field k). Our applications generalize applications of the
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classical Fundamental Theorem as they can be found in [25, Chapter 4].
For V = M};, the axioms 1 ) take the following form

(51) h(l)Sxyy(h(Q)) = 5z,y(h)1x ; ngy(h(l))h@) = €x7y(h)1y,

for all z,y € X and h € A, . The formula (13{14) can be written as
(52) Szz(hl) = Sy,2 (1) Sz y(h);

(53) Ay z(Szy(h)) = Szy(h2) @ Szy(h)),

for all z,y,2 € X, h € Ay, and | € A, .. The compatibility relation for
Hopf modules amounts to

(54) pz,z(Ma) = mpgay ® mpua),
forallm e M, , and a € Ay ..

Proposition 9.4. Let A be a Hopf category in Mi(X) Then A* is a
Hopf module, with structure maps pzy : A;y — A;,y ® Agy and Py y -
A, @Ay — A, defined as follows:

(1) Fora* € A%y pay(a®) = a*af®a;, where ) a’®a; € ALy ®Azy
is the finite dual basis of Agy. The multiplication on A3 is the
opposite convolution.

(2) Fora* € A}, and a € Ay, Yuy.(a" ®a) = a*—a € A

T,z

7 1S given
by the formula (a*—a,b) = (a*,bSy .(a)), for allb e A, ..

Proof. The right A-coaction is obtained as follows: A, is a k-coalgebra,
hence Aj , is a k-algebra (with opposite convolution product). It is there-
fore a right A7 -module, and a right A, ,-comodule. The coaction that is
opbtained in this way is precisely the one that is described in the Proposi-
tion.

Now let us show that the structure maps ., . define a right A-module
structure on A*.

Associativity. For all a* € A;y, a€Ay., bec A, and c € A;y, we have
that

(a*—(ab),¢) = (a*,cSy(ab) D (0", cS. . ()8, - (a)

= (a*—a,cS,4(b)) = ((a*—a)=Db,c).
Unit property. For all a* € A7, and a € A, we have that
(a*—1y,a) = (a*,aSyy(1;)) = (a*, a).
Now we verify the Hopf compatibility condition . We have to show that
pa,z(a"—a) = Z(a*af)/—a(n ® a;a(2),
i
for all a* € A7 and a € 4y .. Now

prz(a=a) = (a"—a)b} @ by,
J
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where Zj bj- ®b; € A;Z ® A, » is the dual basis of A, ., so it suffices to show

that
Z((a*/—a)b;,@bj = Z((a*af)/—a(l), c>aia(2),
i i
for all ¢ € A, .. This can be done as follows:
S (@ a7y —aq. aiayE S (0", ey -(aq)) at e Sy <(a)aiag
= (a7, ¢2)Sy.(aq)))eq)Syz(ae)a)
<a C(Q)Sy Z(a(l)» (1)€y,z ( (2))12 = <a*7c(2)Sy,z(a)>C(1)
Z(a “—a, C(2)><bj70(1)>bj = Z((a*/—a)b}f,c)bj.

J J

B

O

We compute A*©°4. Recall that Az . is a Hopf algebra, for every x € X,
and that

l
A*COA (A7 )COA”W = / ={p € A}, |pa" = (a",1)p, for alla™ € A7},

the space of left integrals on A, ;. From Theorem and Proposition
we obtain the following result.

Corollary 9.5. Let A be a Hopf category in MZ(X) For all z,y € X, we
have an isomorphism

I
A* * A* _
Qpy = Epy /A ®Ary = ALy, €ry(p®a) = p—a.

Proposition 9.6. Let A be a Hopf category in ME:(X) The antipode maps
Seyt Ay — Ay are bijective, for all x,y € X.

)

Proof. 1t is well-known (and it also follows from Corollary o)) that J = f Ar

is finitely generated projective of rank one as a k-module. Therefore the
evaluation map

ev: J*®@J =k, ev(p®p) =p(p)
is an isomorphism of k-modules. The isomorphism
Gpy= (T @a)o(ev ! ®@Ayy): Apy— J* @ Ayy

can be described explicitly as follows:

a:):y ZPZ ® pr—a,

where ev™1(1) = >, ;1 ® 1.
Now assume that Sx,y(a) = 0, for some a € A, ,. For all ¢ € A;w and
b€ Ay, we have that

<90/_a7 b> = <907 be,y(a» =0,
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so it follows that é4(a) = 0, and a = 0, since &,y is a bijection. This
proves that S, , is injective.
Now assume that k is a field. The maps

a= Sy 08y, and B =295y ,085;.,

are injective endomorphisms of the finite dimensional vector spaces A, , and
Az y. From the dimension formulas, it follows that they are automorphisms.
We then have that

—1 —1.

Aye = aoa™ =508 007
—1 —1

Ay,m = poB=p"0 y,x © Sz,y-

This tells us that S, has a left inverse and a right inverse; these are neces-
sarily equal, hence S, , is bijective.

Now consider the general case where k is a commutative ring. The surjectiv-
ity of Sy, follows from a local-global argument. Let ) = Coker (S;,). For
every prime ideal p of £, we can consider the localized Hopf category A, with
Ap 2y = Az y®kFk,. For every prime ideal p of k, Coker (Sp, 2 ) = Qp, since lo-
calization at a prime ideal is an exact functor. Now the spaces Ay, 5 y/PAp 2.y
define a finite dimensional Hopf category A,/pA, over the field k,/pk,, and
its antipode maps are bijective. It follows from Nakayama’s Lemma that the
localized maps Sp 2y 1 Apazy — Apy are all bijective, and then it follows
that S, is bijective. O
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