Regularized structured low-rank approximation

Mariya Ishteva Konstantin Usevich Ivan Markovsky

Dept. ELEC, Vrije Universiteit Brussel

Benelux Meeting on Systems and Control 2013
Outline

Introduction: low rank, structure

Regularized structured low-rank approximation

Example and discussion
Low-rank approximation

- **Problem:** approximate a matrix by a low-rank matrix
- **Used in:** data mining, machine learning, signal processing
- **Used for:** dimensionality reduction and factor analysis
- **Generalization:** structured low-rank approximation
Structured matrices

- relation between elements: $\mathcal{I} \leftrightarrow p$
 - pattern (linear structure)
 - nonlinear structure

\[
\begin{bmatrix}
p_1 & p_2 & p_3 & \ldots & p_n \\
p_2 & p_3 & p_4 & \ddots \\
p_3 & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
p_m & p_{m+1} & p_{m+2} & \ldots & p_{n_p}
\end{bmatrix},
\begin{bmatrix}
p_1 & p_4 & p_3 & p_6 & 0 \\
p_2 & p_3 & 0 & p_3 & p_2 \\
p_1 & 0 & p_7 & p_3 & 0 \\
p_3 & p_5 & p_6 & 0 & p_7 \\
0 & p_6 & p_1 & p_4 & 0
\end{bmatrix}
\]

- (block) Hankel/Toeplitz, Sylvester, banded matrix
- sparse matrices (with fixed sparsity pattern)
- unstructured matrices
Example: autonomous dynamic discrete-time linear time-invariant system, order n, single output

- Given response $y = [y(1), \ldots, y(T)] \in \mathbb{R}^T$ of a system
- Choose a representation of the system;

 Estimate model parameters

Difference equation:

$$\theta_0 y(t) + \theta_1 y(t+1) + \cdots + \theta_n y(t+n) = 0, \quad \text{for } t = 1, \ldots, T-n.$$
Hankel structure in system identification

Difference equation:

\[\theta_0 y(t) + \theta_1 y(t+1) + \cdots + \theta_n y(t+n) = 0, \quad \text{for } t = 1, \ldots, T - n. \]

\[
\begin{bmatrix}
\theta_0 & \theta_1 & \cdots & \theta_n \\
y(1) & y(2) & y(3) & \cdots & y(T - n) \\
y(2) & y(3) & y(4) & \cdots & \cdot \\
y(3) & \cdot & \cdot & \cdots & \cdot \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y(n+1) & y(n+2) & y(n+3) & \cdots & y(T)
\end{bmatrix} = 0
\]

Equivalently, the matrix is rank deficient!

Noisy data: **Hankel low-rank approximation** of a Hankel matrix.
Structured low-rank approximation

Problem: structure preserving low-rank approximation
Outline

Introduction: low rank, structure

Regularized structured low-rank approximation

Example and discussion
Optimization problem

Structured low-rank approximation:

\[
\min_{\hat{p}} \| p - \hat{p} \|_2, \quad \text{such that} \quad \text{rank}(\mathcal{S}(\hat{p})) \leq r.
\]

Low-rank and structure can easily be handled separately

- SVD
- orthogonal projection

However, imposing both is nontrivial.
Orthogonal projection

- For Hankel matrices:
 averaging elements corresponding to the same parameter.

- True for a whole class of affine structures,
 - including (block) Hankel/Toeplitz, Sylvester matrices,
 - each matrix element corresponds to only one element of the parameter vector.

- Let $\text{vec}(X)$ denote the vectorized matrix X.
 Notation: $P_{\mathcal{H}}(X) = \mathcal{I}(\prod_{S} \text{vec}(X))$.
Given: a structured matrix $D \in \mathbb{R}^{m \times n}$ and r, s.t. $r \ll m, n$,
Find: two factors $P \in \mathbb{R}^{m \times r}$ and $L \in \mathbb{R}^{r \times n}$, s.t.
\[D \approx PL \quad \text{and} \quad PL \text{ is a structured matrix}. \]

Challenge: how to impose the structure via the factors?
- for Hankel matrices: use nonlinear Vandermonde structure
- for general linear structures: ?
Enforcing structure by regularization

\[\min_{P, L} \| D - PL \|^2_W + \lambda \| PL - P_S(PL) \|^2_F \]

- For \(\lambda = \infty \) the three problems are equivalent.
- Different interpretations
- In both cases both constraints are satisfied at the solution.
Optimization problem

\[
\min_{P,L} \| D - P \mathcal{S}(PL) \|_W^2 + \lambda \| PL - P \mathcal{S}(PL) \|_F^2
\]

\[
\min_{P,L} \left\| p - \underbrace{\Pi_{\text{vec}}(PL)}_{p_{PL}} \right\|_2^2 + \lambda \| PL - P \mathcal{S}(PL) \|_F^2
\]
High-level idea

Alternatingly improve the approximations of P and of L

$$\min_L \| \rho - \Pi_S \text{vec}(PL) \|^2_2 + \lambda \| PL - P \mathcal{S}(PL) \|^2_F,$$

$$\min_P \| \rho - \Pi_S \text{vec}(PL) \|^2_2 + \lambda \| PL - P \mathcal{S}(PL) \|^2_F.$$
Let I_n be the $n \times n$ identity matrix and ‘⊗’ denote the Kronecker product. Using $\text{vec}(XYZ) = (Z^\top \otimes X) \text{vec}(Y)$ we have

$$\text{vec}(PL) = (I_n \otimes P) \text{vec}(L).$$

Now, $\min_L \|p - \Pi_S \text{vec}(PL)\|^2_2 + \lambda \|PL - P_{\mathcal{F}}(PL)\|^2_F$, becomes

$$\min_L \left\| \begin{bmatrix} \Pi_S & \sqrt{\lambda}(I_{mn} - S\Pi_S) \\ \sqrt{\lambda}(I_{mn} - S\Pi_S) \end{bmatrix} (I_n \otimes P) \text{vec}(L) - \begin{bmatrix} p \\ 0 \end{bmatrix} \right\|^2_2,$$

$$Ax \approx b.$$
Algorithm

Input: Parameter vector $p \in \mathbb{R}^{n_p}$, rank $r \in \mathbb{N}$, $P_0 \in \mathbb{R}^{m \times r}$.

Output: Factors $P \in \mathbb{R}^{m \times r}$ and $L \in \mathbb{R}^{r \times n}$.

1: for $j = 1, 2, \ldots$ do
2: for $k = 1, 2, \ldots$ do
3: Compute L:
4: $L = \arg \min_{L} \left\| \left[\begin{array}{c} \Pi_S \\ \sqrt{\lambda}(I_{mn} - S \Pi_S) \end{array} \right] (I_n \otimes P) \text{vec}(L) - \left[\begin{array}{c} p \\ 0 \end{array} \right] \right\|_2^2$
5: Compute P:
6: $P = \arg \min_{P} \left\| \left[\begin{array}{c} \Pi_S \\ \sqrt{\lambda}(I_{mn} - S \Pi_S) \end{array} \right] (L^\top \otimes I_m) \text{vec}(P) - \left[\begin{array}{c} p \\ 0 \end{array} \right] \right\|_2^2$
7: end for
8: end for
9: Set λ_{j+1} such that $\lambda_{j+1} > \lambda_j$.
10: end for
Details / issues

- For faster convergence:
 - start with small λ
 - increase with each step
- Initial guess P_0 - can be obtained from SVD
- We declare that PL is a structured matrix if

$$\|PL - P_{\mathcal{S}}(PL)\|_F^2 < 10^{-12}.$$

- High computational cost; can be reduced if we take advantage of the structure
Generalizations

- **weighted problems**: \(\min_{\hat{p}} \| p - \hat{p} \|_w^2 \)

- general affine structures

- fixed values in the structure/approximation

- missing values in the given matrix

- other constraints, e.g., smoothness
Outline

Introduction: low rank, structure

Regularized structured low-rank approximation

Example and discussion
Autonomous LTI dynamical system

Given: noisy data \(p \in \mathbb{R}^{100} \), true \(r = 6 \)

| size \((m, n)\): | (7, 94) | (50, 51) |
| speed: | faster | slower |
| \(\| p - \hat{p} \| \): | 854.1568 (smaller) | 859.1257 |
| \(\| p_0 - \hat{p} \| \): | 512.4965 | 298.6408 (smaller) |
| \(\| p - \hat{p} \| \) (5 runs): | 958.2705 | 934.2849 (smaller) |
| \(\| p_0 - \hat{p} \| \) (5 runs): | 512.0792 | 291.0884 (smaller) |
| shape: | less “smooth” | “smoother” (often) |
Discussion

Advantages:
- addresses a missing point of view: image representation
- lower computational cost for smaller targeted rank
- any rank (existing approaches have some restrictions)

Disadvantages:
- how to optimally increase λ?

Open question:
- can we make use of the reshapable structures, e.g., for better initialization?
Summary

- A new algorithm for structured low-rank approximation
- Based on image representation; using regularization
- More efficient for small ranks
- Easily generalizable: affine structures, weights, fixed elements

Future work:
- Explore structure in solving the least squares problem
- Study convergence properties
- Generalize to handle missing data and extra constraints
Thank you!

Questions?

mariya.ishteva@vub.ac.be