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Abstract. Providing flexibility and user-interpretability in nonlinear
system identification can be achieved by means of block-oriented meth-
ods. One of such block-oriented system structures is the parallel Wiener-
Hammerstein system, which is a sum of Wiener-Hammerstein branches,
consisting of static nonlinearities sandwiched between linear dynami-
cal blocks. Parallel Wiener-Hammerstein models have more descriptive
power than their single-branch counterparts, but their identification is
a non-trivial task that requires tailored system identification methods.
In this work, we will tackle the identification problem by performing a
tensor decomposition of the Volterra kernels obtained from the nonlin-
ear system. We illustrate how the parallel Wiener-Hammerstein block-
structure gives rise to a joint tensor decomposition of the Volterra kernels
with block-circulant structured factors. The combination of Volterra ker-
nels and tensor methods is a fruitful way to tackle the parallel Wiener-
Hammerstein system identification task. In simulation experiments, we
were able to reconstruct very accurately the underlying blocks under
noisy conditions.
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1 Introduction

System identification is the art of building dynamical models from noisy measure-
ments of input and output data. Linear system identification is a well-established
discipline [11, 13, 20] and has yielded successful applications in a wide variety of
fields. In the last decades, the use of nonlinear models has become more impor-
tant in order to capture the nonlinear effects of the real world. Many different
nonlinear identification methods have been proposed [6, 17], but very often these
solutions are either tailored to a specific application, or are too complex to un-
derstand or study.

In this paper, we will draw ideas from two nonlinear system identification
approaches and try to combine the benefits of both. The first approach tack-
les the disadvantage of increased complexity of nonlinear models by considering



block-oriented models [7], which combine flexibility with user-interpretation by
interconnecting linear dynamical blocks and static nonlinear functions. Unfor-
tunately, even simple block-oriented models, such as Wiener (cascade of linear-
nonlinear), Hammerstein (cascade nonlinear-linear) or Wiener-Hammerstein (cas-
cade linear-nonlinear-linear) require an iterative optimization on a non-convex
objective function, and identification procedures that are tailored towards a spe-
cific block-structure [16]. The second approach that we will use is the Volterra
model [1, 14], which is an extension of the well-known impulse response model
for linear dynamical systems. Volterra models take into account higher-order
polynomial nonlinearities and can thus be seen as a generalization of the Tay-
lor series expansion for nonlinear dynamical systems. The advantages of Volterra
models are that any fading-memory system can be approximated to an arbitrary
degree of accuracy [1, 15] and the parameter estimation task is a linear problem.
The disadvantages are that the resulting models contain a very high number of
parameters and thus cannot be given physical interpretation.

We generalize the earlier results of [4, 5] on Wiener-Hammerstein system
identification using tensor decompositions in two ways: First, we show that
the case of parallel branches for a fixed degree d gives rise to a canonical
polyadic decomposition with block-structured factors. The study of parallel
Wiener-Hammerstein systems is useful, as they are universal approximators,
whereas single-branch Wiener-Hammerstein systems are not [12, 14]. Second, we
jointly consider Volterra kernels of several degrees by means of the structured
data fusion framework of [18] and solve the problem as a joint structured ten-
sor decomposition. By simultaneously decomposing several Volterra kernels, the
available information is used maximally. The presented method is implemented
by means of structured data fusion [18] using Tensorlab 3.0 [21], and is validated
on simulation experiments.

The paper is organized as follows. In Section 2 we illustrate the link be-
tween the Volterra kernels and tensors and introduce the canonical polyadic
decomposition for tensors. Section 3 illustrates how the Volterra kernels of a
parallel Wiener-Hammerstein system have a natural connection to the canonical
polyadic decomposition with block-circulant factors. This ultimately leads to a
joint structured canonical polyadic decomposition of the Volterra kernels of sev-
eral orders that solve the parallel Wiener-Hammerstein identification task. We
validate the method on numerical simulation examples in Section 4. In Section 5
we draw the conclusions.

2 Volterra kernels, tensors and tensor decomposition

2.1 The Volterra model for nonlinear systems

We consider single-input-single-output systems that map an input u at time
instance k onto an output y at time instance k. The Volterra series expansion
generalizes the well-known convolution operator for linear dynamical systems
to the nonlinear case. Essentially the Volterra model of a nonlinear system ex-
presses the output y(k) as a polynomial function of time-shifted input variables



u(k), u(k − 1), . . . , u(k −m), with m denoting the memory length of the model.
Formally we can write the Volterra model as

y(k) =

D∑
d=1

(
m∑

s1,...,sd=0

Hd(s1, . . . , sd)u(k − s1) · · ·u(k − sd)

)
, (1)

where Hd(·, . . . , ·) denotes Volterra kernel of degree d. The Volterra series expan-
sion allows for representing a large class of nonlinear systems up to an arbitrary
degree of accuracy [1].

2.2 From polynomials to tensors

It is well-known that multivariate homogeneous polynomials can be identified to
symmetric higher-order tensors [3]. For instance, we may represent the quadratic
polynomial p(x1, x2) = 5x21 − 8x1x2 + x22 as a matrix multiplied from both sides
by a vector containing x1 and x2 as

p(x1, x2) = 5x21 − 8x1x2 + x22

=
[
x1 x2

] [ 5 −4
−4 1

] [
x1
x2

]
.

In general, we may thus write a (nonhomogeneous) polynomial as

p(x1, . . . , xn) = p0 + xTp1 + xTP2x + P3 ×1 x
T ×2 x

T ×3 x
T + . . . , (2)

where x =
[
x1 . . . xn

]T
and ×n is the n-mode product defined as follows. Let

X be a I1 × I2 × · · · × IN tensor, and let uT be an 1 × In row vector, then we
have

(X ×n uT )i1···in−1in+1···iN =

In∑
in=1

xi1i2···iNuin .

Notice that the result is a tensor of order N − 1, as mode n is summed out.

2.3 Canonical Polyadic Decomposition

It is often useful to decompose a tensor into simpler components, and for the
proposed method we will use the canonical polyadic decomposition. The canon-
ical polyadic decomposition [2, 8, 10] (also called CanDecomp or PARAFAC)
expresses the tensor T as a sum of rank-one terms as

T =

R∑
i=1

ar ◦ br ◦ cr,

with ◦ denoting the outer product and the number of components R denoting
the CP rank of the tensor T . Often a short-hand notation is used as

T = [[A,B,C]] ,

where A =
[
a1 · · · aR

]
and B and C are defined likewise.



3 Parallel Wiener-Hammerstein as tensor decomposition

For self-containment we will first review and rephrase a result of [5] that connects
the Volterra kernel of a Wiener-Hammerstein system to a canonical polyadic de-
composition with circulant-structured factor matrices. Afterwards, we will gen-
eralize this to the parallel case and then we show that the entire problem leads
to a joint and structured canonical polyadic decomposition.

3.1 Wiener-Hammerstein as structured tensor decomposition

Let us try to understand how the canonical polyadic decomposition shows up
in modeling a Wiener-Hammerstein system. Consider a (single-branch) Wiener-
Hammerstein system as in Figure 1 with FIR filters P (z) and Q(z) with memory
lengths mP and mQ, respectively, and a static nonlinearity f(x) = x3. The

P (z) f(x) = x3 Q(z)
u(t) y(t)v(k) w(k)

Fig. 1. A Wiener-Hammerstein system with input signal u(k) and output signal y(k)
contains a static nonlinear function f(·) that is sandwiched between the FIR filters
P (z) and Q(z).

output y(k) of the Wiener-Hammerstein model is obtained by passing the signal
w(k) through the filter Q(z). We can write this as

y(k) =
[
w(k) · · · w(k −mQ)

] [
1 q1 · · · qmQ

]T
= wTq,

(3)

where we fixed the first filter coefficient q0 = 1 in order to ensure uniqueness of
the identified model. The signal w(k) is given by the expression w(k) = f(v(k)),
or in this case w(k) = v3(k). To obtain v(k), . . . , v(k−mQ) from u(k), we require
of u(k) the samples k down to k−mQ−mP . This convolution operation can be
expressed as a matrix equation as

[
v(k) · · · v(k −mQ)

]
=
[
u(k) · · · u(k −mQ −mP )

]


1

p1
. . .

...
. . . 1

pmP
p1

. . .
...

pmP


vT = uTP,



with the circulant matrix P of size mP +mQ + 1×mQ + 1. Notice that we fixed
the first coefficient p0 = 1 for uniqueness purposes. The matrix P will turn out
to play a central role in the canonical polyadic decomposition of the Volterra
kernels of a Wiener-Hammerstein system.

By fixing both q0 = 1 and p0 = 1, we are excluding the possiblity that there
is a pure delay present in the system. The presence of a delay in the system
can be accounted for by setting p0 = 1 and then performing a scaling on the
nonlinearity, rather than on q0. In case the system has a delay this will lead
to an estimated q0 ≈ 0. However, for notational convenience we have chosen
p0 = q0 = 1 in the remainder of this paper, but a more general scaling strategy
to ensure uniqueness is possible and compatible with the presented method.

For the current Wiener-Hammerstein system we have f(x) = x3, and hence
y(k) = H3 ×1 u

T ×2 u
T ×3 u

T . In [5] it is shown that the Volterra kernel can be
written as the canonical polyadic decomposition H = [[P,P,P diag(q)]], which
we can also write in a more symmetrical expression by extracting qT into an
extra mode as

H = [[P,P,P,qT ]] . (4)

This fact can be appreciated by considering output y(k) as

y(k) = H×1 u
T ×2 u

T ×3 u
T

= [[uTP,uTP,uTP,qT ]]

= [[vT ,vT ,vT ,qT ]]

=

mQ∑
i=0

q(i)v3(k − i),

in which we recognize the convolution of the impulse response of Q(z) with the
time-shifted samples v3(k) as in (3).3

In case of a general polynomial function f(x), the same reasoning can be
developed for each degree d, which will lead to a structured canonical polyadic
decomposition of the degree-d Volterra kernel as in (4). For instance, if f(x) =
ax2 + bx3, we find the following expressions

H2 = a [[P,P,qT ]] ,

H3 = b [[P,P,P,qT ]] .

In Section 3.3 we will discuss how this leads to a joint tensor decomposition.

3 Remark that the introduction of the extra mode qT is similar to the extraction of
the weights λi in the notation [[λ;A,B,C]] of [10] where the columns of the factor
matrices A, B and C are scaled to have unit norm. Our notation is intentionally
different in the sense that we have normalized the first elements of the columns of
P and q equal to one, for practical purposes.



3.2 Parallel Wiener-Hammerstein structure

To understand how we can extend these results to the parallel case, let us con-
sider a two-branch parallel Wiener-Hammerstein system where both branches
have an identical nonlinearity f1(x) = f2(x) = x3, as in Figure 2. To avoid a

P1(z)

P2(z)

f(x) = x3

f(x) = x3

Q1(z)

Q2(z)

+
u(t) y(t)

Fig. 2. An example of a two-branch parallel Wiener-Hammerstein system having an
identical nonlinear function f1(x) = f2(x) = x3.

notational overload, we will assume for the remainder of this paper that the
memory lengths of all filters Pi(z) are mP , and likewise for the filters Qi(z) the
lenghts are mQ. The summation of the two branches leads to

H3 = [[P1,P1,P1,q
T

1 ]] + [[P2,P2,P2,q
T

2 ]]

=
[[ [

P1 P2

]
,
[
P1 P2

]
,
[
P1 P2

]
,
[
qT

1 qT

2

] ]]
,

with Pi and qi defined similar as in the single-branch case. We may include a
scaling of branch one by a scalar c1 (i.e., f1(x) = c1x

3 and branch two by a
scalar c2 (i.e., f2(x) = c2x

3 by introducing an additional mode as

H3 =
[[ [

P1 P2

]
,
[
P1 P2

]
,
[
P1 P2

]
,
[
qT

1 qT

2

]
,
[
c11

T

mQ+1 c21
T

mQ+1

] ]]
. (5)

Introducing the extra factor
[
1T

mQ+1c1 1T

mQ+1c2
]

does not change the size of
the tensor, since it introduces a mode with dimension one. Formally, if we let
m = mP +mQ + 1 denote the memory length of the Volterra model, the tensor
in (5) has size m×m×m× 1× 1 which is equivalent to m×m×m.

3.3 Coupled tensor and matrix decompositions

The Volterra kernels of the parallel Wiener-Hammerstein model for a particular
order d can be decomposed as a structured canonical polyadic decomposition.
Hence, if the Volterra kernels of multiple orders are available, a joint decompo-
sition of multiple Volterra kernels should be performed.



Ultimately, we find that the R-branch parallel Wiener-Hammerstein identi-
fication task is solved by minimizing the cost criterion

minimize
P,q,c

‖h1 − [[P,qT , cT

1 ]]‖22 + ‖H2 − [[P,P,qT , cT

2 ]]‖2F

+ ‖H3 − [[P,P,P,qT , cT

3 ]]‖2F + . . . ,

(6)

where
P =

[
P1 · · · PR

]
,

qT =
[
qT

1 · · · qT

R

]
,

cT

d =
[
c1d1

T

mQ+1 · · · cRd1
T

mQ+1

]
.

The factor matrices P and qT are shared among all joint decompositions while
the constants cT

d depend on the order d of the considered Volterra kernel. Joint
and structured factorizations like (6) can be solved in the framework of struc-
tured data fusion [18]. Remark that it is possible to add weighting factors to the
different terms in (6), for instance if prior knowledge is available on the accuracy
of the estimation of the kernel coefficients of different orders.

4 Numerical results

In this section we validate the proposed identification method on a simulation
example. Numerical experiments were performed using MATLAB and structured
data fusion [18] in Tensorlab 3.0 [21] (code available on request).

We consider a parallel Wiener-Hammerstein system having two branches
with second and third-degree polynomial nonlinearities (Figure 3). The finite

P1(z)

P2(z)

f1(·)

f2(·)

Q1(z)

Q2(z)

+ +

ny(k)

u(t) y0(t) y(k)

Fig. 3. A two-branch parallel Wiener-Hammerstein system with output noise.

impulse response coefficients of the filters Pi(z) and Qi(z) are chosen as sums
of decreasing exponentials with lengths mP = mQ = 10, such that the kth

impulse response coefficient is given as
∑S

i=1 α
k−1
i /

∑S
i=1 αi, with αi drawn from

a uniform distribution U [−0.8, 0.8]. For P1 we have a sum of S = 3 exponentials,



while P2, Q1 and Q2 consist of a single decreasing exponential (S = 1). The
coefficients ci2 and ci3 are drawn from a normal distribution N(0, 0.12), and
ci0 = ci1 = 0. The input signal is a Gaussian white noise sequence u(k) ∼
N(0, 0.72) and is applied without noise to the system, for k = 1, . . . , 10, 000.
The outputs y(k) = y0(k) + ny(k) are disturbed by additive Gaussian noise ny
with a signal-to-noise ratio of 10 dB.

The Volterra kernel coefficients Hd(s1, . . . , s2) with si = 1, . . . ,mP +mQ + 1
of degrees two and three are estimated using a standard linear least-squares
method on the basis of the second and third degree time-shifted inputs u(k −
s1) · · ·u(k− s3) and the noisy outputs y(k), for k = 1, . . . , 10, 000. The memory
lengths mP = mQ = 10 give rise to 21 × 21 second-order Volterra kernel and
a 21 × 21 × 21 third-order Volterra kernel, having in total 231 + 1771 = 2002
unique kernel elements.

The joint matrix and tensor decomposition with structured factors is then
performed using the sdf minf routine of Tensorlab 3.0 [21], returning the param-
eters of the parallel Wiener-Hammerstein system. We have performed a Monte
Carlo experiment with 100 re-initializations of the optimization routine and were
able to retrieve the true underlying system parameters in about 10 % of the cases.
In Figure 4 (a) we show a typical result of a successful identification that was
able to retrieve the underlying system parameters accurately. A zoom of the
reconstructed outputs of the identified model together with the true outputs
and the noisy measurements from which the Volterra kernels were estimated is
shown in Figure 4 (b). It is worth mentioning that in some cases, a relatively
small output error was obtained, while the computed system parameters were
very different from the underlying parameters. In other experiments we have ob-
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impulse response coefficients of P1(z) and P2(z)
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0
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Fig. 4. (a) A typical result of the successful completion, where the method succeeds
in retrieving the underlying parallel Wiener-Hammerstein system parameters. (b) The
output of the identified parallel Wiener-Hammerstein system (∗) reconstructs very ac-
curately the noiseless output signal y0 (◦), starting from the Volterra kernel coefficients
that were computed from the noisy data y with 10 dB SNR (×).



served that the success rate of the algorithm improves for lower noise levels and
shorter filter lengths. If the method failed consistently on a system, this could
almost always be understood from problem-specific system properties, such as
similar impulse responses in the filters, dominance of one of the branches (i.e.,
unbalanced values of the coefficients of fi), etc.

Nevertheless, for extending the method to larger-scale problems, the issue of
having good initial estimates becomes more relevant. Possibly the work of [19]
which focuses on block-circulant structured canonical polyadic decomposition
may provide good starting points for initializing our method.

Finally we would like to remark that in simulations, one can easily compare
the retrieved system parameters (or simulated output data) with the underlying
true system parameters or signals, which is obviously not possible in real exper-
iments. However, it is worth mentioning that the tensor approximation error (6)
was strongly correlated with the error between the simulated output and noise-
less output data, which provides a proxy to select the best model among a set
of candidates.

5 Conclusions

The joint decomposition of Volterra kernels with structured factors is able to
retrieve up to a high degree of accuracy the underlying system parameters. The
success rate of the method decreases as the noise level and number of param-
eters in the system grows, but even up to moderately long impulse responses
(memory length of ten samples), the method was successful in about 10 % of the
re-initializations of the optimization routine. Ongoing work is concerned with
obtaining good initializations [22], as this becomes an important issue when
considering filters with longer memories and/or higher noise levels. In future
work, the link should be investigated between rank properties and identifiability
of the coupled and structured canonical polyadic decomposition and the iden-
tifiability of the parallel Wiener-Hammerstein structure, as was done for other
block-structures in [9].
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