On i-tight sets of the Hermitian polar space with small parameter i

Jan De Beule

Vrije Universiteit Brussel

jan@debeule.eu

GAC workshop Pécs 2016
Finite classical polar spaces

- point-line geometry
- one or all axiom
- classical examples: associated to a sesquilinear or quadratic form on a vector space.
Let \mathbb{F}_q be the finite field of order q.
Let $V(d, q)$ be the d-dimensional vector space over \mathbb{F}_q.
Let f be a non-degenerate sesquilinear or non-singular quadratic form on $V(d, q)$.

Definition

The finite classical polar space \mathcal{P} associated to f is the geometry of totally isotropic/totally singular subspaces with respect to f. The Witt index of f is the rank of the polar space.

Finite classical polar spaces are naturally embedded in the projective space $\text{PG}(d, q)$.
Definition

A *generator* is a subspace of maximal dimension.

A polar space of rank $r > 1$ is a geometry with points, lines, \ldots, $r - 1$-dimensional projective spaces.
Finite classical polar spaces

<table>
<thead>
<tr>
<th>form</th>
<th>polar space</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadratic</td>
<td>orthogonal</td>
<td>$Q(2n, q)$, $Q^-(2n+1, q)$, $Q^+(2n+1, q)$</td>
</tr>
<tr>
<td>alternating</td>
<td>symplectic</td>
<td>$W(2n+1, q)$</td>
</tr>
<tr>
<td>hermitian</td>
<td>hermitian</td>
<td>$H(n, q^2)$</td>
</tr>
</tbody>
</table>

- **Orthogonal forms:** quadratic when q is even, both quadratic and bilinear when q is odd.
- **Symplectic polar space:** is isomorphic with parabolic quadric when q is even.
Finite classical polar spaces

<table>
<thead>
<tr>
<th>Polar Space</th>
<th>Rank</th>
<th>Points</th>
<th>Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(2n, q)$</td>
<td>n</td>
<td>$(q^n + 1) \frac{q^n - 1}{q - 1}$</td>
<td>$\prod_{i=1}^{n} (q^i + 1)$</td>
</tr>
<tr>
<td>$W(2n - 1, q)$</td>
<td>n</td>
<td>$(q^n + 1) \frac{q^n - 1}{q - 1}$</td>
<td>$\prod_{i=1}^{n} (q^i + 1)$</td>
</tr>
<tr>
<td>$H(2n + 1, q^2)$</td>
<td>n</td>
<td>$(q^{2n+1} + 1) \frac{q^{2n+2} - 1}{q^2 - 1}$</td>
<td>$\prod_{i=0}^{n} (q^{2i+1} + 1)$</td>
</tr>
<tr>
<td>$H(2n, q^2)$</td>
<td>n</td>
<td>$(q^{2n+1} + 1) \frac{q^{2n} - 1}{q^2 - 1}$</td>
<td>$\prod_{i=1}^{n} (q^{2i+1} + 1)$</td>
</tr>
</tbody>
</table>
Strongly regular graphs

Definition

A graph Γ on v vertices is a strongly regular (v, k, λ, μ)-graph if

- the valency is constant k for every vertex,
- every two adjacent vertices have exactly λ common adjacent vertices,
- every two non-adjacent vertices have exactly μ adjacent vertices.
Definition

Let \mathcal{P} be a polar space with ν points. Define the graph Γ with vertices the points of \mathcal{P} and two different vertices being adjacent if and only if they are collinear as points in \mathcal{P}.

Theorem (proof: see e.g. Brouwer, Cohen, Neumaier)

The 1-adjacency matrix has exactly three eigenvalues, ϵ^-, k, ϵ^+, and \mathbb{R}^ν is the sum of the eigenspaces.
Definition (S.E. Payne, 1987)

A point set A of a finite generalized quadrangle is *tight* if on average, each point of A is collinear with the maximum number of points of A.
Tight sets

Definition (S.E. Payne, 1987)
A point set A of a finite generalized quadrangle is tight if on average, each point of A is collinear with the maximum number of points of A.

Definition (not a formal definition!)
An i-tight set is a set of points that behaves as if it is the disjoint union of i generators.
Tight sets

Definition

Let \(P \) be a polar space of rank \(r \) over \(\mathbb{F}_q \). A set \(T \) of points is an \(i \)-tight set of \(P \) if the following holds:

\[
|P^\perp \cap T| = \begin{cases}
 i \frac{q^{r-1} - 1}{q-1} + q^{r-1} & \text{if } P \in T \\
 i \frac{q^{r-1} - 1}{q-1} & \text{if } P \notin T
\end{cases}
\]
Tight sets

Definition

Let \mathcal{P} be a polar space of rank r over \mathbb{F}_q. A set \mathcal{T} of points is an i-tight set of \mathcal{P} if the following holds:

$$|\mathcal{P} \perp \cap \mathcal{T}| = \begin{cases} \frac{iq^{r-1} - 1}{q-1} + q^{r-1} & \text{if } P \in \mathcal{T} \\ \frac{iq^{r-1} - 1}{q-1} & \text{if } P \notin \mathcal{T} \end{cases}$$

Theorem (Bamberg et al., after Delsarte et al.)

The characteristic vector of a tight set is orthogonal to one of the eigenspaces.
Tight sets: examples in hermitian polar spaces

Lemma (many references)

- The set of points of $\mathbb{W}(2n + 1, q)$ embedded in $\mathbb{H}(2n + 1, q^2)$ is a $(q + 1)$-tight set.
- The set of points of $\mathbb{H}(2n - 1, q^2)$ embedded in $\mathbb{H}(2n, q^2)$ is a $(q^{2n-1} + 1)$-tight set.
Tight sets: examples in hermitian polar spaces

Lemma (many references)

- The set of points of $W(2n + 1, q)$ embedded in $H(2n + 1, q^2)$ is a $(q + 1)$-tight set.
- The set of points of $H(2n - 1, q^2)$ embedded in $H(2n, q^2)$ is a $(q^{2n-1} + 1)$-tight set.

Lemma (many references as well)

Let q be odd. The set of points of $Q(2n, q)$ embedded in $H(2n, q^2)$ is a $(q + 1)$-tight set.
We consider the polar space $H(4, q^2)$. If q is odd, two examples of $(q + 1)$-tight sets.

A non-degenerate hyperplane section yields a $q^3 + 1$-tight set.

Natural question: what about i-tight sets, $i < q + 1$?
Theorem (DB–Metsch, 201x)

An \(i \)-tight set, \(i < q + 1 \) of \(\mathbb{H}(4, q^2) \), is the disjoint union of \(i \) lines of \(\mathbb{H}(4, q^2) \).
Small tight sets

Theorem (DB–Metsch, 201x)

An \(i \)-tight set, \(i < q + 1 \) of \(H(4, q^2) \), is the disjoint union of \(i \) lines of \(H(4, q^2) \).

Conjecture

A \(q + 1 \)-tight set of \(H(4, q^2) \) is the set of points of a sub generalized quadrangle of order \(q \).
Small tight sets

Theorem (DB–Metsch, 201x)

An i-tight set, $i < q + 1 - \sqrt{2q}$ of $H(6, q^2)$, is the disjoint union of i planes of $H(6, q^2)$.
Theorem (DB–Metsch, 201x)

An i-tight set, $i < q + 1 - \sqrt{2q}$ of $H(6, q^2)$, is the disjoint union of i planes of $H(6, q^2)$.

Conjecture

An i-tight set, $i < q + 1$ of $H(2n, q^2)$, is the disjoint union of i generators of $H(2n, q^2)$.
John Bamberg, Shane Kelly, Maska Law, and Tim Penttila.
Tight sets and m-ovoids of finite polar spaces.

A. E. Brouwer, A. M. Cohen, and A. Neumaier.
Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].

Klaus Metsch.
Small tight sets in finite elliptic, parabolic and hermitian polar spaces.
Combinatorica, (accepted).

Stanley E. Payne.
Tight pointsets in finite generalized quadrangles.
Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1987).