Do i-tight sets and m-ovoids hate each other?

Jan De Beule
(joint work John Bamberg and Ferdinand Ihringer)

Department of Mathematics
Ghent University
Department of Mathematics
Vrije Universiteit Brussel

April 16–17, 2014
Workshop on Galois geometries and its applications, Pécs, Hungary
Galois geometry

- $\text{PG}(d, q)$: projective space of dimension d over finite field $\text{GF}(q)$, elements are subspaces of dimension at least 1 of the $d + 1$ dimensional vector space over $\text{GF}(q)$.

- Sesquilinear and quadratic forms: totally isotropic elements of underlying vector space make a nice geometry: *classical polar space*.
Galois geometry

- \(\text{PG}(d, q) \): projective space of dimension \(d \) over finite field \(\text{GF}(q) \), elements are subspaces of dimension at least 1 of the \(d + 1 \) dimensional vector space over \(\text{GF}(q) \).

- Sesquilinear and quadratic forms: totally isotropic elements of underlying vector space make a nice geometry: \textit{classical polar space}.
Polar spaces

- Witt index of underlying form = rank of polar space
- subspaces of maximal dimension: *generators*
Substructures

Definition

An m-ovoid is a set O of points such that every generator meets O in exactly m points.
Notation: \(\theta_{r-1}(q) := \frac{q^{r-1}}{q-1} \) = number of points in an \(r - 1 \) dimensional projective space.

Definition
An \(i \)-tight set \(T \) of a finite classical polar space \(P \) of rank \(r \geq 2 \), is a set of \(i\theta_{r-1}(q) \) points, such that

\[
|P^\perp \cap T| = \begin{cases}
 i\theta_{r-2}(q) + q^{r-1} & \text{if } P \in T \\
 i\theta_{r-2}(q) & \text{if } P \notin T.
\end{cases}
\]
Substructures

Notation: $\theta_{r-1}(q) := \frac{q^r - 1}{q - 1} = \text{number of points in an } r - 1 \text{ dimensional projective space.}$

Definition

An i-tight set \mathcal{T} of a finite classical polar space \mathcal{P} of rank $r \geq 2$, is a set of $i\theta_{r-1}(q)$ points, such that

$$|P^\perp \cap \mathcal{T}| = \begin{cases}
 i\theta_{r-2}(q) + q^{r-1} & \text{if } P \in \mathcal{T} \\
 i\theta_{r-2}(q) & \text{if } P \notin \mathcal{T}.
\end{cases}$$
Graphs and eigenspaces

- **collinearity graph** of polar space: strongly regular graph: three eigenspaces (two non-trivial).
- \(m\)-ovoid: orthogonal to first non-trivial eigenspace.
- \(i\)-tight set: orthogonal to second non-trivial eigenspace.

Results of several people are relevant: J. Bamberg, M. Law, S. Kelly, T. Penttila.
Ovoids of projective spaces

- Ovoids in projective spaces (general dimension, arbitrary field): introduced by J. Tits
- Ovoids do not exist in projective spaces of rank more than three (J. Tits)
- Ovoids in $\text{PG}(3, q)$: combinatorial definition is possible (and used frequently).

Definition

An ovoid of $\text{PG}(3, q)$ is a set of $q^2 + 1$ points no three collinear.
Ovoids of polar spaces

- Original definition: see m-ovoid.
- Ovoids in finite classical polar spaces and generalized quadrangles: introduced by J. Thas.
- Ovoids seem to be *rare* in polar spaces of high rank.
- There are some cases where existence can be proven relatively easy.
- There are some cases where non-existence can be proven relatively easy.
Non-existence results

By one proof (Essentially due to J. Thas):
- $Q^{-}(2n+1, q), \, n \geq 2$
- $W(2n+1, q), \, n \geq 2$
- $H(2n, q^2), \, n \geq 2$

With (some) extra work:
- $W(3, q), \, q \text{ odd (J. Thas)}$
- $Q(2n, q) \, n \geq 4 \text{ (A. Gunawardena and E. Moorehouse)}$
Non-existence results

By one proof (Essentially due to J. Thas):
- $Q^-(2n + 1, q), n \geq 2$
- $W(2n + 1, q), n \geq 2$
- $H(2n, q^2), n \geq 2$

With (some) extra work:
- $W(3, q), q$ odd (J. Thas)
- $Q(2n, q), n \geq 4$ (A. Gunawardena and E. Moorehouse)
Existence results

By easy observation:
- $Q(4, q)$
- $H(3, q^2)$

By hard work:
- $Q(6, q)$, $q = 3^h$: from polarity of Split Cayley Hexagon
- $Q^+(7, q)$, some particular values of q: using spreads and triality
Difficult cases

- $Q^+(2n + 1, q)$, $n \geq 4$.
- $H(2n + 1, q^2)$, $n \geq 2$.

Theorem (A. Blokhuis, G.E. Moorehouse)

The hyperbolic quadric $Q^+(2n + 1, q)$, $q = p^h$, $n \geq 3$ has no ovoids if

$$p^n > \left(\frac{2n + p}{2n + 1} \right)^2 - \left(\frac{2n + p - 2}{2n + 1} \right)^2.$$

Theorem (G.E. Moorehouse)

The hermitian variety $H(2n + 1, q^2)$, $q = p^h$, $n \geq 2$ has no ovoids if

$$p^{2n+1} > \left(\frac{2n + p}{2n + 1} \right)^2 - \left(\frac{2n + p - 1}{2n + 1} \right)^2.$$
Difficult cases

- $Q^+(2n+1, q), \ n \geq 4$.
- $H(2n+1, q^2), \ n \geq 2$.

Theorem (A. Blokhuis, G.E. Moorehouse)

The hyperbolic quadric $Q^+(2n+1, q), \ q = p^h, \ n \geq 3$ has no ovoids if

$$p^n > \left(\frac{2n+p}{2n+1}\right)^2 - \left(\frac{2n+p-2}{2n+1}\right)^2.$$

Theorem (G.E. Moorehouse)

The hermitian variety $H(2n+1, q^2), \ q = p^h, \ n \geq 2$ has no ovoids if

$$p^{2n+1} > \left(\frac{2n+p}{2n+1}\right)^2 - \left(\frac{2n+p-1}{2n+1}\right)^2.$$
Difficult cases

- $Q^+(2n+1, q), \ n \geq 4.$
- $H(2n+1, q^2), \ n \geq 2.$

Theorem (A. Blokhuis, G.E. Moorehouse)

The hyperbolic quadric $Q^+(2n+1, q), \ q = p^h, \ n \geq 3$ has no ovoids if

$$p^n > \left(\frac{2n+p}{2n+1} \right)^2 - \left(\frac{2n+p-2}{2n+1} \right)^2.$$

Theorem (G.E. Moorehouse)

The hermitian variety $H(2n+1, q^2), \ q = p^h, \ n \geq 2$ has no ovoids if

$$p^{2n+1} > \left(\frac{2n+p}{2n+1} \right)^2 - \left(\frac{2n+p-1}{2n+1} \right)^2.$$
More results on hermitian varieties

Theorem (JDB, K. Metsch)

The hermitian variety $H(5, 4)$ has no ovoid.

Theorem (A. Klein)

The hermitian variety $H(2n − 1, q^2)$ has no ovoid if $n > q^3$.
Using tight sets

- Construct a weighted tight set
- Use the intersection with an ovoid and a combinatorial argument
- One line non-existence proof for $Q^-(5, q)$, $W(5, q)$ and $H(4, q^2)$.
- Results on m-ovoids of $Q^-(5, q)$.

Theorem

If \mathcal{O} is an m-ovoid of $Q^-(5, q)$, then $m = \frac{q+1}{2}$

This theorem is due to B. Segre (1965), generalized to generalized quadrangles of order (s, s^2) by J.A. Thas (1989), and shown by J. Bamberg, A. Devillers and Schillewaert using the intriguing set approach (2012).
Using tight sets

- Construct a weighted tight set
- Use the intersection with an ovoid and a combinatorial argument
- One line non-existence proof for $Q^- (5, q)$, $W(5, q)$ and $H(4, q^2)$.
- Results on m-ovoids of $Q^- (5, q)$.

Theorem

If \mathcal{O} is an m-ovoid of $Q^- (5, q)$, then $m = \frac{q+1}{2}$

This theorem is due to B. Segre (1965), generalized to generalized quadrangles of order (s, s^2) by J.A. Thas (1989), and shown by J. Bamberg, A. Devillers and Schillewaert using the intriguing set approach (2012).
Using tight sets

- Construct a weighted tight set
- Use the intersection with an ovoid and a combinatorial argument
- One line non-existence proof for $Q^-(5, q)$, $W(5, q)$ and $H(4, q^2)$.
- Results on m-ovoids of $Q^-(5, q)$.

Theorem

If \mathcal{O} is an m-ovoid of $Q^-(5, q)$, then $m = \frac{q+1}{2}$

This theorem is due to B. Segre (1965), generalized to generalized quadrangles of order (s, s^2) by J.A. Thas (1989), and shown by J. Bamberg, A. Devillers and Schillewaert using the intriguing set approach (2012).
Using tight sets

- Construct a weighted tight set
- Use the intersection with an ovoid and a combinatorial argument
- One line non-existence proof for $Q^{-}(5, q)$, $W(5, q)$ and $H(4, q^{2})$.
- Results on m-ovoids of $Q^{-}(5, q)$.

Theorem

If \mathcal{O} is an m-ovoid of $Q^{-}(5, q)$, then $m = \frac{q+1}{2}$

This theorem is due to B. Segre (1965), generalized to generalized quadrangles of order (s, s^{2}) by J.A. Thas (1989), and shown by J. Bamberg, A. Devillers and Schillewaert using the intriguing set approach (2012).
Approach applied on $\mathbb{H}(5, q^2)$

- Embedded $W(5, q)$ in $\mathbb{H}(5, q^2)$: $(q + 1)$-tight set
- π: plane meeting $\mathbb{H}(5, q^2)$ in $\mathbb{H}(2, q^2)$: using π, π^\perp, and the closure: weighted $(q^2 - 1)^2$-tight set, weights of π and π^\perp equal $-q^2 + 1$.
- Currently: only an alternative proof for non-existence of ovoids of $\mathbb{H}(5, 4)$.

Jan De Beule hating structures