Lower and upper bounds of maximal partial ovoids of orthogonal polar spaces

J. De Beule A. Klein K. Metsch L. Storme

Department of Pure Mathematics and Computer Algebra
Ghent University

Geometric and algebraic combinatorics 4
in $\mathrm{PG}(2n, q)$, $n \geq 2$,
$Q(2n, q) : X_0^2 + X_1 X_2 + \ldots X_{2n-1} X_{2n} = 0$.

in $\mathrm{PG}(2n+1, q)$, $n \geq 2$,
$Q^-(2n+1, q) : f(X_0, X_1) + X_2 X_3 + \ldots X_{2n} X_{2n+1} = 0,
\quad f(X_0, X_1) : \text{irreducible, homogeneous, of degree 2}.$

in $\mathrm{PG}(2n+1, q)$, $n \geq 2$,
$Q^+(2n+1, q) : X_0 X_1 + X_2 X_3 + \ldots X_{2n} X_{2n+1} = 0.$
Quadrics

Rank

- \(\text{Q}(2n, q) \): rank \(n \).
- \(\text{Q}^- (2n + 1, q) \): rank \(n \).
- \(\text{Q}^+ (2n + 1, q) \): rank \(n + 1 \).
Let \mathcal{P} be a finite classical polar space.

Definition

ovoid: every generator meets \mathcal{O} in exactly one point.

First question: existence?
Existence of ovoids (low rank)

<table>
<thead>
<tr>
<th>$Q^{-}(5, q)$</th>
<th>no (J.A. Thas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(4, q)$</td>
<td>yes</td>
</tr>
<tr>
<td>$Q^{+}(3, q)$</td>
<td>yes</td>
</tr>
</tbody>
</table>
Existence of ovoids (low rank)

<table>
<thead>
<tr>
<th>Ovoid</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^-(5, q)$</td>
<td>no (J.A. Thas)</td>
</tr>
<tr>
<td>$Q(4, q)$</td>
<td>yes</td>
</tr>
<tr>
<td>$Q^+(3, q)$</td>
<td>yes</td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Ovoid Type</th>
<th>Existence Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^{-}(7, q)$</td>
<td>no</td>
</tr>
<tr>
<td>$Q^{-}(2n + 1, q), n \geq 2$</td>
<td>no (slicing)</td>
</tr>
<tr>
<td>$Q^{+}(5, q)$</td>
<td>yes</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime</td>
</tr>
<tr>
<td>(S. Ball, P. Govaerts, L. Storme)</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>examples known when $q = 3^h$</td>
</tr>
<tr>
<td>no, q even (J.A. Thas)</td>
<td></td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
</tr>
<tr>
<td>$Q(2n, q), n \geq 4$</td>
<td>no (slicing)</td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Ovoid</th>
<th>Existence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^-(7, q)$</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>$Q^-(2n + 1, q)$, $n \geq 2$</td>
<td></td>
<td>no (slicing)</td>
</tr>
<tr>
<td>$Q^+(5, q)$</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime</td>
<td>(S. Ball, P. Govaerts, L. Storme)</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, q even</td>
<td>(J.A. Thas)</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>examples known when $q = 3^h$</td>
<td></td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no</td>
<td>(A. Gunawardena, E. Moorhouse)</td>
</tr>
<tr>
<td>$Q(2n, q)$, $n \geq 4$</td>
<td>no (slicing)</td>
<td></td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Ovoid</th>
<th>Existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^-(7, q)$</td>
<td>no</td>
</tr>
<tr>
<td>$Q^-(2n + 1, q)$, $n \geq 2$</td>
<td>no (slicing)</td>
</tr>
<tr>
<td>$Q^+(5, q)$</td>
<td>yes</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime (S. Ball, P. Govaerts, L. Storme)</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>examples known when $q = 3^h$</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, q even (J.A. Thas)</td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
</tr>
<tr>
<td>$Q(2n, q)$, $n \geq 4$</td>
<td>no (slicing)</td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Ovoid</th>
<th>Existence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^{-}(7, q)$</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>$Q^{-}(2n + 1, q)$, $n \geq 2$</td>
<td>no (slicing)</td>
<td></td>
</tr>
<tr>
<td>$Q^{+}(5, q)$</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime (S. Ball, P. Govaerts, L. Storme)</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>examples known when $q = 3^h$ no, q even (J.A. Thas)</td>
<td></td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
<td></td>
</tr>
<tr>
<td>$Q(2n, q)$, $n \geq 4$</td>
<td>no (slicing)</td>
<td></td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Space Description</th>
<th>Existence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^- (7, q)$</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>$Q^- (2n+1, q), n \geq 2$</td>
<td>no (slicing)</td>
<td></td>
</tr>
<tr>
<td>$Q^+ (5, q)$</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime (S. Ball, P. Govaerts, L. Storme) examples known when $q = 3^h$</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, q even (J.A. Thas)</td>
<td></td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
<td></td>
</tr>
<tr>
<td>$Q(2n, q), n \geq 4$</td>
<td>no (slicing)</td>
<td></td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Space</th>
<th>Existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^-(7, q)$</td>
<td>no</td>
</tr>
<tr>
<td>$Q^-(2n+1, q)$, $n \geq 2$</td>
<td>no (slicing)</td>
</tr>
<tr>
<td>$Q^+(5, q)$</td>
<td>yes</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime (S. Ball, P. Govaerts, L. Storme)</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>examples known when $q = 3^h$</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, q even (J.A. Thas)</td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
</tr>
<tr>
<td>$Q(2n, q)$, $n \geq 4$</td>
<td>no (slicing)</td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

<table>
<thead>
<tr>
<th>Ovoid Type</th>
<th>Existence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^{-}(7, q)$</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>$Q^{-}(2n + 1, q), n \geq 2$</td>
<td>no (slicing)</td>
<td></td>
</tr>
<tr>
<td>$Q^{+}(5, q)$</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, $q > 3$ odd prime (S. Ball, P. Govaerts, L. Storme) examples known when $q = 3^h$</td>
<td></td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>no, q even (J.A. Thas)</td>
<td></td>
</tr>
<tr>
<td>$Q(8, q)$</td>
<td>no (A. Gunawardena, E. Moorhouse)</td>
<td></td>
</tr>
<tr>
<td>$Q(2n, q), n \geq 4$</td>
<td>no (slicing)</td>
<td></td>
</tr>
</tbody>
</table>
Existence of ovoids (high rank)

$Q^+(2n + 1, q)$, $n \geq 3$, $q = p^h$: no, if

$$p^n > \binom{2n + p}{2n + 1} - \binom{2n + p - 2}{2n + 1}$$

$Q^+(7, q)$: yes if q is odd prime or $q \equiv 0$ or $2 \mod 3$
Questions

- If there is no ovoid, what is the (size of) the *largest* partial ovoid?
- If there are ovoids, what is the (size of) the *largest* maximal partial ovoid different from an ovoid?
- What is the (size of) the *smallest* maximal partial ovoids?
Questions

- If there is no ovoid, what is the (size of) the largest partial ovoid?
- If there are ovoids, what is the (size of) the largest maximal partial ovoid different from an ovoid?
- What is the (size of) the smallest maximal partial ovoids?
Let \(\mathcal{P} \) be a finite classical polar space.

Definition

Partial ovoid: every generator meets \(\mathcal{O} \) in at most one point.

Definition

\(\mathcal{O} \) is **maximal:** \(\mathcal{O} \) cannot be extended.

Definition

\(\mathcal{O} \) is **maximal:** \(P^\perp \) meets \(\mathcal{O} \) in at least one point.
Let \mathcal{P} be a finite classical polar space.

Definition

Partial ovoid: every generator meets \mathcal{O} in at most one point.

Definition

\mathcal{O} is **maximal:** \mathcal{O} cannot be extended.

Definition

\mathcal{O} is **maximal:** P^\bot meets \mathcal{O} in at least one point.
How to obtain a lower bound

\(n_i := \) number of points of \(Q(d, q) \) collinear with \(i \) points of \(\mathcal{O} \).

\[
\sum n_i = |Q^{\pm}(2n + 1, q)| - w
\]

\[
\sum in_i = wq|Q^{\pm}(2n - 1, q)|
\]

\[
\sum i(i - 1)n_i = w(w - 1)|Q^{\pm}(2n - 1, q)|
\]

\[
\sum i(i - 1)(i - 2)n_i = w(w - 1)(w - 2)|Q(2n - 2, q)|
\]
How to obtain a lower bound

\(n_i \) := number of points of \(Q(d, q) \) collinear with \(i \) points of \(O \).

\[
\sum n_i = |Q^\pm(2n + 1, q)| - w
\]

\[
\sum in_i = wq|Q^\pm(2n - 1, q)|
\]

\[
\sum i(i - 1)n_i = w(w - 1)|Q^\pm(2n - 1, q)|
\]

\[
\sum i(i - 1)(i - 2)n_i = w(w - 1)(w - 2)|Q(2n - 2, q)|
\]
Lower bounds

How to obtain a lower bound

\(n_i := \text{number of points of } Q(d, q) \text{ collinear with } i \text{ points of } O. \)

\[\sum n_i = |Q^\pm(2n + 1, q)| - w \]

\[\sum in_i = wq|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)n_i = w(w - 1)|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)(i - 2)n_i = w(w - 1)(w - 2)|Q(2n - 2, q)| \]
How to obtain a lower bound

\[n_i := \text{number of points of } Q(d, q) \text{ collinear with } i \text{ points of } O. \]

\[\sum n_i = |Q^\pm(2n + 1, q)| - w \]

\[\sum in_i = wq|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)n_i = w(w - 1)|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)(i - 2)n_i = w(w - 1)(w - 2)|Q(2n - 2, q)| \]
How to obtain a lower bound

\[n_i := \text{number of points of } Q(d, q) \text{ collinear with } i \text{ points of } O. \]

\[\sum n_i = |Q^\pm(2n + 1, q)| - w \]

\[\sum in_i = wq|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)n_i = w(w - 1)|Q^\pm(2n - 1, q)| \]

\[\sum i(i - 1)(i - 2)n_i = w(w - 1)(w - 2)|Q(2n - 2, q)| \]
Counting
Using the equations . . .

\[
0 \leq \sum_{i} n_i(i - 1)(i - a)(i - a - 1)
= \sum_{i} n_i i(i - 1)(i - 2) - (2a - 1) \sum_{i} n_i i(i - 1) + (a^2 + a) \sum_{i} n_i(i - 1)
\]
Resulting bounds for $Q^{-}(5, q)$ and $Q^{+}(5, q)$

Theorem

$Q^{-}(5, q) : q \geq 4 \Rightarrow w \geq 2q + 2$, $q < 4 \Rightarrow w \geq 2q + 1$

$Q^{-}(2n+1, q) : n \geq 3 \Rightarrow w \geq 2q + 1$

$Q^{+}(5, q) : w \geq 2q$

$Q^{+}(2n+1, q) : n \geq 3 \Rightarrow w \geq 2q + 1$
Resulting bounds for $Q^-(5, q)$ and $Q^+(5, q)$

Theorem

$Q^-(5, q) : q \geq 4 \Rightarrow w \geq 2q + 2, \quad q < 4 \Rightarrow w \geq 2q + 1$

$Q^-(2n + 1, q) : n \geq 3 \Rightarrow w \geq 2q + 1$

$Q^+(5, q) : w \geq 2q$

$Q^+(2n + 1, q) : n \geq 3 \Rightarrow w \geq 2q + 1$
How to obtain a lower bound

\[n_i := \text{number of points of } Q(d, q) \text{ collinear wit } i \text{ points of } \mathcal{O}. \]

\[\sum n_i = |Q(2n, q)| - w \]

\[\sum in_i = wq|Q(2n - 2, q)| \]

\[\sum i(i - 1)n_i = w(w - 1)|Q(2n - 2, q)| \]

\[\sum i(i - 1)(i - 2)n_i \leq w(w - 1)(w - 2)|Q^+(2n - 3, q)| \]
Orthogonal polar spaces
Ovoids and partial ovoids
Lower bounds
Upper bounds

Lower bounds

How to obtain a lower bound

\[n_i := \text{number of points of } Q(d, q) \text{ collinear with } i \text{ points of } \mathcal{O}. \]

\[\sum n_i = |Q(2n, q)| - w \]

\[\sum in_i = wq|Q(2n - 2, q)| \]

\[\sum i(i - 1)n_i = w(w - 1)|Q(2n - 2, q)| \]

\[\sum i(i - 1)(i - 2)n_i \leq w(w - 1)(w - 2)|Q^+(2n - 3, q)| \]
Resulting bounds for $Q(2n, q)$

Theorem

$Q(4, q) : q_{odd} \Rightarrow w \geq 1.419q$

$Q(6, q) : q \in \{3, 5, 7\} \Rightarrow w \geq 2q, q \geq 9 \Rightarrow w \geq 2q - 1$

$Q(8, 3) : w \geq 2q$

$Q(2n, q) : n \geq 4 : \geq 2q + 1$
A lower bound for $Q(2n, q)$, q even

- $Q(2n, q)$, q even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $W(2n − 1, q)$.

Theorem

The smallest maximal partial ovoids of $W(2n − 1, q)$ are the hyperbolic lines.

Theorem

The smallest maximal partial ovoids of $Q(2n, q)$ are conics whose nucleus coincides with the nucleus of $Q(2n, q)$.
A lower bound for $Q(2n, q)$, q even

- $Q(2n, q)$, q even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $W(2n - 1, q)$.

Theorem

The smallest maximal partial ovoids of $W(2n - 1, q)$ are the hyperbolic lines.

Theorem

The smallest maximal partial ovoids of $Q(2n, q)$ are conics whose nucleus coincides with the nucleus of $Q(2n, q)$.
A lower bound for $Q(2n, q)$, q even

- $Q(2n, q)$, q even has a *nucleus*
- Projecting from this nucleus yields the *symplectic* polar space $W(2n - 1, q)$.

Theorem

The smallest maximal partial ovoids of $W(2n - 1, q)$ *are the hyperbolic lines*

Theorem

The smallest maximal partial ovoids of $Q(2n, q)$ *are conics whose nucleus coincides with the nucleus of* $Q(2n, q)$.
A lower bound for $Q(2n, q)$, q even

- $Q(2n, q)$, q even has a *nucleus*
- Projecting from this nucleus yields the *symplectic* polar space $W(2n - 1, q)$.

Theorem

The smallest maximal partial ovoids of $W(2n - 1, q)$ are the hyperbolic lines.

Theorem

The smallest maximal partial ovoids of $Q(2n, q)$ are conics whose nucleus coincides with the nucleus of $Q(2n, q)$.
Upper bounds

An upper bound for $Q^+(2n+1, q)$

- $|\mathcal{O}| = q^n + 1 - \delta$.
- $|P^\perp \cap \mathcal{O}| \geq q^{n-1} + 1 - \delta$
- $n_i = 0$ for $i < q^{n-1} + 1 - \delta$ and $i > q^{n-1} + 1$
- $0 \leq \sum_i n_i(i - q^{n-1} - 1)(i - q^{n-1})(i - q^{n-1} - 1 + \delta)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^+(2n+1, q)$, that is not an ovoid, has at most $q^n - q^{(n-1)/2}$ points.
An upper bound for $Q^+(2n + 1, q)$

- $|\mathcal{O}| = q^n + 1 - \delta$.
- $|P^\perp \cap \mathcal{O}| \geq q^{n-1} + 1 - \delta$

- $n_i = 0$ for $i < q^{n-1} + 1 - \delta$ and $i > q^{n-1} + 1$
- $0 \leq \sum_i n_i(i - q^{n-1} - 1)(i - q^{n-1})(i - q^{n-1} - 1 + \delta)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^+(2n + 1, q)$, that is not an ovoid, has at most $q^n - q^{(n-1)/2}$ points.
An upper bound for $Q^+(2n+1, q)$

- $|\mathcal{O}| = q^n + 1 - \delta$.
- $|P^\perp \cap \mathcal{O}| \geq q^{n-1} + 1 - \delta$
- $n_i = 0$ for $i < q^{n-1} + 1 - \delta$ and $i > q^{n-1} + 1$
- $0 \leq \sum_i n_i(i - q^{n-1} - 1)(i - q^{n-1})(i - q^{n-1} - 1 + \delta)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^+(2n+1, q)$, that is not an ovoid, has at most $q^n - q^{(n-1)/2}$ points.
An upper bound for $Q^+(2n+1, q)$

- $|O| = q^n + 1 - \delta$.
- $|P^\perp \cap O| \geq q^{n-1} + 1 - \delta$
- $n_i = 0$ for $i < q^{n-1} + 1 - \delta$ and $i > q^{n-1} + 1$
- $0 \leq \sum_i n_i(i - q^{n-1} - 1)(i - q^{n-1})(i - q^{n-1} - 1 + \delta)$

Theorem

A maximal partial ovoid O of $Q^+(2n+1, q)$, that is not an ovoid, has at most $q^n - q^{(n-1)/2}$ points.
An upper bound for $Q^+(2n+1, q)$

- $|\mathcal{O}| = q^n + 1 - \delta$.
- $|P^\perp \cap \mathcal{O}| \geq q^{n-1} + 1 - \delta$
- $n_i = 0$ for $i < q^{n-1} + 1 - \delta$ and $i > q^{n-1} + 1$
- $0 \leq \sum_i n_i(i - q^{n-1} - 1)(i - q^{n-1})(i - q^{n-1} - 1 + \delta)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^+(2n+1, q)$, that is not an ovoid, has at most $q^n - q^{(n-1)/2}$ points.
An upper bound for $Q(2n, q)$, q odd non prime

Lemma

Consider $Q(2n, q) \subseteq Q^+(2n+1, q)$, $n \geq 3$, q not a prime, and suppose that $Q^+(2n+1, q)$ has an ovoid with $q^n + 1 - \delta$, $\delta > 0$, points in $Q(2n, q)$. Then $\delta \geq 2(q^{n-2} + q^{n-3} + \ldots + q + 1) + 1$.

Theorem (A. Gács and JDB)

$Q(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$Q(6, q)$, q not a prime, does not have a maximal partial ovoid of size $q^3 + 1 - \delta$ with $0 < \delta < q + 1$.
An upper bound for $Q(2n, q)$, q odd non prime

Lemma

Consider $Q(2n, q) \subseteq Q^+(2n + 1, q)$, $n \geq 3$, q not a prime, and suppose that $Q^+(2n + 1, q)$ has an ovoid with $q^n + 1 - \delta$, $\delta > 0$, points in $Q(2n, q)$. Then $\delta \geq 2(q^{n-2} + q^{n-3} + \ldots + q + 1) + 1$.

Theorem (A. Gács and JDB)

$Q(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$Q(6, q)$, q not a prime, does not have a maximal partial ovoid of size $q^3 + 1 - \delta$ with $0 < \delta < q + 1$.
An upper bound for $Q(2n, q)$, q odd non prime

Lemma

Consider $Q(2n, q) \subseteq Q^+(2n + 1, q)$, $n \geq 3$, q not a prime, and suppose that $Q^+(2n + 1, q)$ has an ovoid with $q^n + 1 - \delta$, $\delta > 0$, points in $Q(2n, q)$. Then $\delta \geq 2(q^{n-2} + q^{n-3} + \ldots + q + 1) + 1$.

Theorem (A. Gács and JDB)

$Q(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$Q(6, q)$, q not a prime, does not have a maximal partial ovoid of size $q^3 + 1 - \delta$ with $0 < \delta < q + 1$.
An upper bound for $Q(2n, q)$, q odd non prime

Lemma

Consider $Q(2n, q) \subseteq Q^+(2n+1, q)$, $n \geq 3$, q not a prime, and suppose that $Q^+(2n+1, q)$ has an ovoid with $q^n+1-\delta$, $\delta > 0$, points in $Q(2n, q)$. Then $\delta \geq 2(q^{n-2} + q^{n-3} + \ldots + q + 1) + 1$.

Theorem (A. Gács and JDB)

$Q(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$Q(6, q)$, q not a prime, does not have a maximal partial ovoid of size $q^3 + 1 - \delta$ with $0 < \delta < q + 1$.
An upper bound for $Q(2n, q)$, q odd prime

Theorem (S. Ball, P. Govaerts and L. Storme)
Every ovoid of $Q(4, q)$, q prime, is an elliptic quadric $Q^-(3, q)$.

Theorem
Every partial ovoid of $Q(6, q)$, $q > 13$ prime, contains at most $q^3 - 2q + 1$ points.
An upper bound for $Q(2n, q)$, q odd prime

Theorem (S. Ball, P. Govaerts and L. Storme)

Every ovoid of $Q(4, q)$, q prime, is an elliptic quadric $Q^-(3, q)$.

Theorem

Every partial ovoid of $Q(6, q)$, $q > 13$ prime, contains at most $q^3 - 2q + 1$ points.
An upper bound for $Q^-(5, q)$

Theorem

Let S be a partial spread of $\mathbb{H}(3, q^2)$. Then $|S| \leq \frac{1}{2}(q^3 + q + 2)$.

This dualizes to an upper bound for partial ovoids of $Q^-(5, q)$.
An upper bound for $Q^-(5, q)$

Theorem

Let S be a partial spread of $H(3, q^2)$. Then $|S| \leq \frac{1}{2}(q^3 + q + 2)$.

This dualizes to an upper bound for partial ovoids of $Q^-(5, q)$.
\mathcal{P}_n denotes a finite classical polar space of rank n.

Theorem

If partial ovoids of \mathcal{P}_r have deficiency ϵ_r, then partial ovoids of \mathcal{P}_{r+1} have deficiency at least $q\epsilon_r$.