Group rings of finite strongly monomial groups: central units and primitive idempotents

joint work with E. Jespers, G. Olteanu and Á. del Río

Inneke Van Gelder

Vrije Universiteit Brussel

Recend Trends in Rings and Algebras,
Murcia, June 3-7, 2013
Outline

Background information on units

Virtual basis of $\mathbb{Z}(\mathbb{U}(\mathbb{Z}G))$

Matrix units of each simple component in the rational group algebra $\mathbb{Q}G$

Description of subgroup of finite index in $\mathbb{U}(\mathbb{Z}G)$ for a class of metacyclic groups
Outline

- Background information on units
Outline

- Background information on units
- Virtual basis of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}G))$
Outline

- Background information on units
- Virtual basis of $\mathcal{Z}(U(\mathbb{Z}G))$
- Matrix units of each simple component in the rational group algebra $\mathbb{Q}G$
Outline

- Background information on units
- Virtual basis of $\mathbb{Z}(\mathcal{U}(\mathbb{Z}G))$
- Matrix units of each simple component in the rational group algebra $\mathbb{Q}G$
- Description of subgroup of finite index in $\mathcal{U}(\mathbb{Z}G)$ for a class of metacyclic groups
Group rings

Let G be a group and R a ring.
Group rings

Let G be a group and R a ring. RG is the set of all linear combinations

$$\sum_{g \in G} r_g g,$$

with $r_g \in R$ and $r_g \neq 0$ for only finitely many coefficients.
Group rings

Let G be a group and R a ring. RG is the set of all linear combinations

$$\sum_{g \in G} r_g g,$$

with $r_g \in R$ and $r_g \neq 0$ for only finitely many coefficients.

Operations:

$$\left(\sum_{g \in G} r_g g \right) + \left(\sum_{g \in G} s_g g \right) = \sum_{g \in G} (r_g + s_g) g$$

$$\left(\sum_{g \in G} r_g g \right) \cdot \left(\sum_{g \in G} s_g g \right) = \sum_{g, h \in G} r_g s_h g h$$
Let R be a ring with unity 1.
Let R be a ring with unity 1. $\mathcal{U}(R)$ is the set of all units of R:

$$\mathcal{U}(R) = \{ r \in R \mid \exists s \in R : rs = 1 = sr \}.$$
Let R be a ring with unity 1. $\mathcal{U}(R)$ is the set of all units of R:

$$\mathcal{U}(R) = \{ r \in R \mid \exists s \in R : rs = 1 = sr \}.$$

Example

Let G be a finite group.

$$\mathcal{U}(\mathbb{Z}G) = ?$$
Example: Bass units

Let G be a group, g an element of G of order n and k and m positive integers such that $k^m \equiv 1 \mod n$. The **Bass (cyclic) unit** with parameters g, k, m is the element in $\mathbb{Z}G$

$$u_{k,m}(g) = (1 + g + \cdots + g^{k-1})^m + \frac{(1 - k^m)}{n}(1 + g + g^2 + \cdots + g^{n-1})$$

with inverse in $\mathbb{Z}G$

$$(1 + g^k + \cdots + g^{k(i-1)})^m + \frac{(1 - i^m)}{n}(1 + g + g^2 + \cdots + g^{n-1})$$

where i is any integer such that $ki \equiv 1 \mod n$.
Example: Bass units

Let G be a group, g an element of G of order n and k and m positive integers such that $k^m \equiv 1 \mod n$. The **Bass (cyclic) unit** with parameters g, k, m is the element in $\mathbb{Z}G$

$$u_{k,m}(g) = (1 + g + \cdots + g^{k-1})^m + \frac{1 - k^m}{n}(1 + g + g^2 + \cdots + g^{n-1})$$

with inverse in $\mathbb{Z}G$

$$(1 + g^k + \cdots + g^{k(i-1)})^m + \frac{1 - i^m}{n}(1 + g + g^2 + \cdots + g^{n-1})$$

where i is any integer such that $ki \equiv 1 \mod n$.

Theorem [Bass-Milnor]

If G is a finite abelian group, then the Bass units generate a subgroup of finite index in $\mathcal{U}(\mathbb{Z}G)$.
The **Wedderburn decomposition** of $\mathbb{Q}G$ is the decomposition into simple algebras

$$A_1 \oplus \cdots \oplus A_k.$$
The **Wedderburn decomposition** of $\mathbb{Q}G$ is the decomposition into simple algebras

$$A_1 \oplus \cdots \oplus A_k.$$

Each simple component is determined by a **primitive central idempotent** e_i, i.e.

$$A_i = \mathbb{Q}Ge_i.$$
Strong Shoda pairs

If $K \triangleleft H \leq G$ and $K \neq H$ then

$$\varepsilon(H, K) = \prod (\hat{K} - \hat{M}) = \hat{K} \prod (1 - \hat{M}),$$

where M runs through the set of all minimal normal subgroups of H containing K properly.
If $K \triangleleft H \leq G$ and $K \neq H$ then

$$\varepsilon(H, K) = \prod (\hat{K} - \hat{M}) = \hat{K} \prod (1 - \hat{M}),$$

where M runs through the set of all minimal normal subgroups of H containing K properly.
We set $\varepsilon(H, H) = \hat{H}.$
Strong Shoda pairs

If $K \triangleleft H \leq G$ and $K \neq H$ then

$$\varepsilon(H, K) = \prod (\hat{K} - \hat{M}) = \hat{K} \prod (1 - \hat{M}),$$

where M runs through the set of all minimal normal subgroups of H containing K properly. We set $\varepsilon(H, H) = \hat{H}$.

A **strong Shoda pair** of G is a pair (H, K) of subgroups of G such that

- $K \leq H \leq N_G(K)$
- H/K is cyclic and a maximal abelian subgroup of $N_G(K)/K$
- the different G-conjugates of $\varepsilon(H, K)$ are orthogonal.
Strongly monomial groups

Let χ be an irreducible (complex) character of G.

Strongly monomial groups

Let χ be an irreducible (complex) character of G. χ is **strongly monomial** if there is a strong Shoda pair (H, K) of G and a linear character θ of H with kernel K such that $\chi = \theta^G$.
Let χ be an irreducible (complex) character of G. χ is **strongly monomial** if there is a strong Shoda pair (H, K) of G and a linear character θ of H with kernel K such that $\chi = \theta^G$. The group G is strongly monomial if every irreducible character of G is strongly monomial.
Let \(\chi \) be an irreducible (complex) character of \(G \). \(\chi \) is **strongly monomial** if there is a strong Shoda pair \((H, K)\) of \(G \) and a linear character \(\theta \) of \(H \) with kernel \(K \) such that \(\chi = \theta^G \).

The group \(G \) is strongly monomial if every irreducible character of \(G \) is strongly monomial.

Example

Abelian-by-supersolvable groups are strongly monomial.
The Wedderburn decomposition for strongly monomial groups

Theorem [Olivieri-del Río-Simón]

Let G be a finite strongly monomial group, then the Wedderburn decomposition is as follows:

$$
\mathbb{Q}G = \bigoplus_{(H,K)} \mathbb{Q}Ge(G, H, K) = \bigoplus_{(H,K)} M_n(\mathbb{Q}(\xi_k) \ast N_G(K)/H)
$$

with (H, K) running on strong Shoda pairs of G.
Virtual basis

It is well known that

\[\mathbb{Z}(U(\mathbb{Z}G)) = \pm \mathbb{Z}(G) \times T, \]

where \(T \) is a finitely generated free abelian group.
Virtual basis

It is well known that

\[\mathcal{Z}(U(\mathbb{Z}G)) = \pm \mathcal{Z}(G) \times T, \]

where \(T \) is a finitely generated free abelian group.

A virtual basis of \(\mathcal{Z}(U(\mathbb{Z}G)) \) is a set of multiplicatively independent elements of \(\mathcal{Z}(U(\mathbb{Z}G)) \) which generate a subgroup of finite index in \(\mathcal{Z}(U(\mathbb{Z}G)) \).
Strategy: We know how many elements a virtual basis of $\mathcal{Z}(U(\mathbb{Z}G))$ should have.
Strategy: We know how many elements a virtual basis of $\mathcal{Z}(U(\mathbb{Z}G))$ should have.

Theorem [Jespers-del Río-Olteanu-VG]

Let G be a finite strongly monomial group. Then the rank of $\mathcal{Z}(U(\mathbb{Z}G))$ equals

$$\sum_{(H,K)} \left(\frac{\varphi([H : K])}{k(H,K)[N : H]} - 1 \right),$$

where (H, K) runs through a complete and non-redundant set of strong Shoda pairs of G, h is such that $H = \langle h, K \rangle$ and

$$k(H,K) = \begin{cases}
1, & \text{if } hh^n \in K \text{ for some } n \in N_G(K); \\
2, & \text{otherwise.}
\end{cases}$$
Main strategy

Take an arbitrary central unit u in $\mathcal{Z}(U(\mathbb{Z}G)) \subset \mathbb{Q}G$.

Strategy

1. Compute a basis of $U(\mathbb{Z}[\zeta[H : K]] N_G(K)/H)$
2. Compute units in $\mathbb{Z}G$ projecting to the basis in $U(\mathbb{Z}[\zeta[H : K]] N_G(K)/H)$ and trivially in the other components.
Main strategy

Take an arbitrary central unit u in $\mathbb{Z}(\mathcal{U}(\mathbb{Z}G)) \subset \mathbb{Q}G$. We can write u as follows

$$u = \sum_{(H,K)} ue(G, H, K) = \prod_{(H,K)} (1 - e(G, H, K) + ue(G, H, K)).$$
Virtual basis of the center

Main strategy

Take an arbitrary central unit u in $\mathcal{Z}(U(\mathbb{Z}G)) \subset \mathbb{Q}G$. We can write u as follows

$$u = \sum_{(H,K)} u_e(G,H,K) = \prod_{(H,K)} (1 - e(G,H,K) + u_e(G,H,K)).$$

Hence it is necessary and sufficient to construct a virtual basis in each

$$\mathcal{Z}(\mathbb{Z}Ge(G,H,K) + \mathbb{Z}(1 - e(G,H,K))) \approx \mathbb{Z}[\zeta_{[H:K]}]^{N_G(K)/H} + \mathbb{Z}(1 - e(G,H,K)).$$
Main strategy

Take an arbitrary central unit u in $\mathbb{Z}(U(\mathbb{Z}G)) \subset \mathbb{Q}G$. We can write u as follows

$$u = \sum_{(H,K)} ue(G, H, K) = \prod_{(H,K)} (1 - e(G, H, K) + ue(G, H, K)).$$

Hence it is necessary and sufficient to construct a virtual basis in each

$$\mathbb{Z}(\mathbb{Z}G e(G, H, K) + \mathbb{Z}(1 - e(G, H, K))) \approx \mathbb{Z}[^{\zeta[H:K]}_N G(K)/H] + \mathbb{Z}(1 - e(G, H, K)).$$

Strategy

1. Compute a basis of $U(\mathbb{Z}[^{\zeta[H:K]}_N G(K)/H])$
2. Compute units in $\mathbb{Z}G$ projecting to the basis in $U(\mathbb{Z}[^{\zeta[H:K]}_N G(K)/H])$ and trivially in the other components.
Step 1: Cyclotomic units

If $n > 1$ and k is an integer coprime with n then

$$\eta_k(\zeta_n) = \frac{1 - \zeta_n^k}{1 - \zeta_n} = 1 + \zeta_n + \zeta_n^2 + \cdots + \zeta_n^{k-1}$$

is a unit of $\mathbb{Z}[\zeta_n]$. These units are called the \textbf{cyclotomic units} of $\mathbb{Q}(\zeta_n)$.
Step 1: Cyclotomic units

If \(n > 1 \) and \(k \) is an integer coprime with \(n \) then

\[
\eta_k(\zeta_n) = \frac{1 - \zeta_n^k}{1 - \zeta_n} = 1 + \zeta_n + \zeta_n^2 + \cdots + \zeta_n^{k-1}
\]

is a unit of \(\mathbb{Z}[\zeta_n] \). These units are called the **cyclotomic units** of \(\mathbb{Q}(\zeta_n) \).

Theorem [Washington]

\[
\{ \eta_k(\zeta_{p^n}) \mid 1 < k < \frac{p^n}{2}, \ p \nmid k \} \text{ generates a free abelian subgroup of finite index in } U(\mathbb{Z}[\zeta_{p^n}]) \text{ when } p \text{ is prime.}
\]
Step 1: Cyclotomic units

For a subgroup A of $\text{Gal}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q})$ and $u \in \mathbb{Q}(\zeta_{p^n})$, we define $\pi_A(u)$ to be $\prod_{\sigma \in A} \sigma(u)$.
Step 1: Cyclotomic units

For a subgroup A of $\text{Gal}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q})$ and $u \in \mathbb{Q}(\zeta_{p^n})$, we define $\pi_A(u)$ to be $\prod_{\sigma \in A} \sigma(u)$.

Lemma [Jespers-del Río-Olteanu-VG]

Let A be a subgroup of $\text{Gal}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q})$. Let I be a set of coset representatives of $\mathcal{U}(\mathbb{Z}/p^n\mathbb{Z})$ modulo $\langle A, \phi^{-1} \rangle$ containing 1. Then the set

$$\{ \pi_A (\eta_k(\zeta_{p^n})) \mid k \in I \setminus \{1\} \}$$

is a virtual basis of $\mathcal{U}(\mathbb{Z}[\zeta_{p^n}]^A)$.
Step 2: Generalized Bass units

If G is a finite group, M a normal subgroup of G, $g \in G$ and k and m positive integers such that $\gcd(k, |g|) = 1$ and $k^m \equiv 1 \mod |g|$.
Step 2: Generalized Bass units

If G is a finite group, M a normal subgroup of G, $g \in G$ and k and m positive integers such that \(\gcd(k, |g|) = 1 \) and \(k^m \equiv 1 \mod |g| \). Then we have

$$u_{k,m}(1 - \hat{M} + g \hat{M}) = 1 - \hat{M} + u_{k,m}(g)\hat{M}.$$

Observe that any element \(b = u_{k,m}(1 - \hat{M} + g \hat{M}) \) is an invertible element of \(\mathbb{Z}G(1 - \hat{M}) + \mathbb{Z}G\hat{M} \). As this is an order in \(\mathbb{Q}G \), there is a positive integer \(n \) such that \(b^n \in \mathcal{U}(\mathbb{Z}G) \).
If G is a finite group, M a normal subgroup of G, $g \in G$ and k and m positive integers such that $\gcd(k, |g|) = 1$ and $k^m \equiv 1 \mod |g|$. Then we have

$$u_{k,m}(1 - \hat{M} + g\hat{M}) = 1 - \hat{M} + u_{k,m}(g)\hat{M}.$$

Observe that any element $b = u_{k,m}(1 - \hat{M} + g\hat{M})$ is an invertible element of $\mathbb{Z}G(1 - \hat{M}) + \mathbb{Z}G\hat{M}$. As this is an order in $\mathbb{Q}G$, there is a positive integer n such that $b^n \in \mathcal{U}(\mathbb{Z}G)$.

Let $n_{G,M}$ denote the minimal positive integer satisfying this condition for all $g \in G$. Then we call the element

$$u_{k,m}(1 - \hat{M} + g\hat{M})^{n_{G,M}} = u_{k,mn_{G,M}}(1 - \hat{M} + g\hat{M})$$

a **generalized Bass unit** based on g and M with parameters k and m.

Step 2: Generalized Bass units
Step 2: Generalized Bass units

Let k be a positive integer coprime with p and let r be an arbitrary integer.
Step 2: Generalized Bass units

Let \(k \) be a positive integer coprime with \(p \) and let \(r \) be an arbitrary integer. For every \(0 \leq j \leq s \leq n \) we construct recursively the following products of generalized Bass units of \(\mathbb{Z}H \):

\[
c_{s}^{j}(H, K, k, r) = 1,
\]

and, for \(0 \leq j \leq s - 1 \),

\[
c_{s}^{j}(H, K, k, r) = \prod_{h \in H} u^{k, O_{p}^{n}(k)_{n H, K}(g_{r p}^{n} - s h \hat{K} + 1 - \hat{K})}^{p s - j - 1} \prod_{l = j + 1}^{s - 1} c_{s}^{l}(H, K, k, r) - 1 \prod_{l = 0}^{s + l - j - 1} c_{s}^{l}(H, K, k, r) - 1.
\]
Step 2: Generalized Bass units

Let k be a positive integer coprime with p and let r be an arbitrary integer. For every $0 \leq j \leq s \leq n$ we construct recursively the following products of generalized Bass units of $\mathbb{Z}H$:

$$c^s_j(H, K, k, r) = 1,$$

$$c^{s-1}_j\left(\prod_{l=j+1}^{s} c^s_l(H, K, k, r) - 1\right) - \left(\prod_{l=0}^{j} c^{s+l-j}(H, K, k, r) - 1\right).$$
Virtual basis of the center

Step 2: Generalized Bass units

Let \(k \) be a positive integer coprime with \(p \) and let \(r \) be an arbitrary integer. For every \(0 \leq j \leq s \leq n \) we construct recursively the following products of generalized Bass units of \(\mathbb{Z}H \):

\[
c_s^s(H, K, k, r) = 1,
\]

and, for \(0 \leq j \leq s - 1 \),

\[
c_j^s(H, K, k, r) = \left(\prod_{h \in H_j} u_{k, O_{p^n}(k)n_{H, K}}(g^{rp^n}hK + 1 - \hat{K}) \right)^{ps-j-1} \left(\prod_{l=j+1}^{s-1} c_l^s(H, K, k, r)^{-1} \right) \left(\prod_{l=0}^{j-1} c_l^{s+l-j}(H, K, k, r)^{-1} \right).
\]
Step 2: Generalized Bass units

Proposition [Jespers-del Río-Olteanu-VG]

Let H be a finite group and K a subgroup of H such that $H/K = \langle gK \rangle$ is cyclic of order p^n. Let

$\mathcal{H} = \{ L \leq H \mid K \leq L \} = \{ H_j = \langle g^{p^n-j}, K \rangle \mid 0 \leq j \leq n \}$. Let k be a positive integer coprime with p and let r be an arbitrary integer. Then

$$\rho_{H_{j_1}}(c_j^s(H, K, k, r)) = \begin{cases}
\eta_k(\zeta_r^{s-j})O_{p^n}(k)p^{s-1}n_{H,K}, & \text{if } j = j_1; \\
1, & \text{if } j \neq j_1.
\end{cases} \quad (1)$$

for every $0 \leq j, j_1 \leq s \leq n$.

Inneke Van Gelder (Brussels) Central units and primitive idempotents Murcia, June 3-7, 2013 17 / 26
Main Theorem

Theorem [Jespers-del Río-Olteanu-VG]

Let G be a strongly monomial group such that there is a complete and non-redundant set S of strong Shoda pairs (H, K) of G with the property that each $[H : K]$ is a prime power. For every $(H, K) \in S$, let T_K be a right transversal of $N_G(K)$ in G, let $I_{(H,K)}$ be a set of representatives of $\mathcal{U}(\mathbb{Z}/[H : K]\mathbb{Z})$ modulo $\langle N_G(K)/H, -1 \rangle$ containing 1 and let $[H : K] = p_{(H,K)}^{n_{(H,K)}}$, with $p_{(H,K)}$ prime. Then

$$\left\{ \prod_{t \in T_K} \prod_{x \in N_G(K)/H} c_0^{n_{(H,K)}}(H, K, k, x)^t : (H, K) \in S, k \in I_{(H,K)} \setminus \{1\} \right\}$$

is a virtual basis of $\mathbb{Z}(\mathcal{U}(\mathbb{Z}G))$.
Virtual basis of the center

Examples of groups satisfying the conditions

- $C_{q^m} \rtimes C_{p^n}$ with C_{p^n} acting faithfully on C_{q^m}
Examples of groups satisfying the conditions

- \(C_{q^m} \rtimes C_{p^n} \) with \(C_{p^n} \) acting faithfully on \(C_{q^m} \)
- \(A_4 \)
Examples of groups satisfying the conditions

- $C_q^m \rtimes C_p^n$ with C_p^n acting faithfully on C_q^m
- A_4
- $D_{2n} = \langle a, b \mid a^n = b^2 = 1, \ a^b = a^{-1} \rangle \iff n$ is a power of a prime
Examples of groups satisfying the conditions

- $C_{q^m} \rtimes C_{p^n}$ with C_{p^n} acting faithfully on C_{q^m}
- A_4
- $D_{2n} = \langle a, b \mid a^n = b^2 = 1, \ a^b = a^{-1} \rangle \iff n$ is a power of a prime
- $Q_{4n} = \langle x, y \mid x^{2n} = y^4 = 1, \ x^n = y^2, \ xy = x^{-1} \rangle \iff n$ is a power of 2
- ...

Inneke Van Gelder (Brussels) Central units and primitive idempotents Murcia, June 3-7, 2013 19 / 26
Idea

Each simple component of $\mathbb{Q}G$ is isomorphic to a matrix algebra.
Each simple component of $\mathbb{Q}G$ is isomorphic to a matrix algebra. We want to know which group ring elements represent the matrix units E_{ij}:

$$E_{ij} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\end{pmatrix}.$$
Idea

For a strongly monomial group G, each simple component of $\mathbb{Q}G$ is of the form

$$\mathbb{Q}Ge(G, H, K) = M_n(\mathbb{Q}He(H, K) \ast NG(K)/H)$$

for a strong Shoda pair (H, K).
Matrix units

Idea

For a strongly monomial group G, each simple component of $\mathbb{Q}G$ is of the form

$$\mathbb{Q}Ge(G, H, K) = M_n(\mathbb{Q}H\varepsilon(H, K) \ast N_G(K)/H)$$

for a strong Shoda pair (H, K).

When the twisting of $\mathbb{Q}N_G(K)\varepsilon(H, K) \ast N_G(K)/H$ is trivial, Reiner provides an explicit isomorphism

$$\psi : \mathbb{Q}H\varepsilon(H, K) \ast N_G(K)/H \rightarrow M_{[N_G(K):H]}(F).$$
Theorem [Jespers-del Río-Olteanu-VG]

Let \((H, K)\) be a strong Shoda pair of a finite group \(G\) such that \(\tau(nH, n'H) = 1\) for all \(n, n' \in NG(K)\). Let \(P, A \in M_n(F)\) be the matrices

\[
P = \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 0 & \cdots & 0 & 0 \\
1 & 0 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & -1 & 0 \\
1 & 0 & 0 & \cdots & 0 & -1
\end{pmatrix}
\]

and

\[
A = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}
\]

Then

\[
\{ E_{x'x} := x' \hat{T}_1 \epsilon(H, K)x^{-1} \mid x, x' \in T_2 \langle x_e \rangle \}
\]

is a complete set of matrix units of \(\mathbb{Q}Ge(G, H, K)\) where

\(x_e = \psi^{-1}(PAP^{-1})\), \(T_1\) is a transversal of \(H\) in \(NG(K)\) and \(T_2\) is a right transversal of \(NG(K)\) in \(G\).
Examples of groups satisfying the conditions

\[C_{q^m} \rtimes C_{p^n} \text{ with } C_{p^n} \text{ acting faithfully on } C_{q^m} \]
Examples of groups satisfying the conditions

- $C_{q^m} \rtimes C_{p^n}$ with C_{p^n} acting faithfully on C_{q^m}
- S_4
Examples of groups satisfying the conditions

- $C_q^m \rtimes C_p^n$ with C_p^n acting faithfully on C_q^m
- S_4
- A_4
Examples of groups satisfying the conditions

- $C_{q^m} \rtimes C_{p^n}$ with C_{p^n} acting faithfully on C_{q^m}
- S_4
- A_4
- $D_{2n} = \langle a, b \mid a^n = b^2 = 1, \ a^b = a^{-1} \rangle$
Examples of groups satisfying the conditions

- $C_q^m \rtimes C_p^n$ with C_p^n acting faithfully on C_q^m
- S_4
- A_4
- $D_{2n} = \langle a, b \mid a^n = b^2 = 1, \ a^b = a^{-1} \rangle$
- ...
Main ingredients

Let \mathcal{O} be an order in a division algebra D. For an ideal Q of \mathcal{O} we denote by $E(Q)$ the subgroup of $\text{SL}_n(\mathcal{O})$ generated by all Q-elementary matrices, that is $E(Q) = \langle I + qE_{ij} \mid q \in Q, \ 1 \leq i, j \leq n, \ i \neq j, \ E_{ij} \text{ a matrix unit} \rangle$.

Theorem [Bass-Vaseršteǐn-Liehl-Venkataramana]

If $n \geq 3$ then $[\text{SL}_n(\mathcal{O}) : E(Q)] < \infty$. If $\mathcal{U}(\mathcal{O})$ is infinite then $[\text{SL}_2(\mathcal{O}) : E(Q)] < \infty$.
Let \mathcal{O} be an order in a division algebra D. For an ideal Q of \mathcal{O} we denote by $E(Q)$ the subgroup of $\text{SL}_n(\mathcal{O})$ generated by all Q-elementary matrices, that is $E(Q) = \langle I + qE_{ij} \mid q \in Q, \ 1 \leq i, j \leq n, \ i \neq j, \ E_{ij} \text{ a matrix unit} \rangle$.

Theorem [Bass-Vaseršteǐn-Liehl-Venkatararamana]

If $n \geq 3$ then $[\text{SL}_n(\mathcal{O}) : E(Q)] < \infty$. If $U(\mathcal{O})$ is infinite then $[\text{SL}_2(\mathcal{O}) : E(Q)] < \infty$.

Since $\text{GL}_n(\mathcal{O})$ is generated by $\text{SL}_n(\mathcal{O})$ and its center, our construction of central units and matrix units is sufficient to describe a subgroup of finite index in $U(\mathbb{Z}G)$ for some groups G.
Theorem [Jespers-del Río-Olteanu-VG]

Let $G = C_{q^m} \rtimes C_{p^n}$ be a finite metacyclic group with $C_{p^n} = \langle b \rangle$ acting faithfully on $C_{q^m} = \langle a \rangle$ and with p and q different primes. Assume that either $q \neq 3$, or $n \neq 1$ or $p \neq 2$. Then the following two groups are finitely generated nilpotent subgroups of $\mathcal{U}(\mathbb{Z}G)$:

$$V_j^+ = \left\langle 1 + p^n t_j^2 yx_j^h b x_j^{-k} \mid y \in \overline{\langle a \rangle \langle b \rangle}, \ h, k \in \{1, \ldots, p^n\}, \ h < k \right\rangle,$$

$$V_j^- = \left\langle 1 + p^n t_j^2 yx_j^h b x_j^{-k} \mid y \in \overline{\langle a \rangle \langle b \rangle}, \ h, k \in \{1, \ldots, p^n\}, \ h > k \right\rangle.$$

Hence $V^+ = \prod_{j=1}^m V_j^+$ and $V^- = \prod_{j=1}^m V_j^-$ are nilpotent subgroups of $\mathcal{U}(\mathbb{Z}G)$. Furthermore, the group

$$\langle U, V^+, V^- \rangle,$$

with U a virtual basis of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}G))$, is of finite index in $\mathcal{U}(\mathbb{Z}G)$.
Reference

- E. Jespers, G. Olteanu, Á. del Río, I. Van Gelder, Group rings of finite strongly monomial groups: Central units and primitive idempotents, Journal of Algebra, Volume 387, 1 August 2013, Pages 99-116