Vrije Universiteit Brussel

Eric Jespers

Professor of Mathematics

Dean of the Faculty of Sciences and Bio-Engineering Sciences

Personal Information

My coordinates



Research interests

  • Ring Theory
  • Group Theory
  • Semigroup Theory

Recent Publications

  • Finitely Presented Monoids and Algebras defined by Permutation Relations of Dihedral Type (with F. Cedo, E. Jespers, G. Klein, IJAC, to appear 2016 (accepted 22 dec. 2015, 24 pages). DOI: 10.1142/S0218196716500089
  • Krull orders in nilpotent groups: corrigendum and addendum (with J. Okninski), Archiv der Mathematik, published online DOI 10.1007/s00013-015-0860-4 (dec 2015), 4 pages.
  • Construction of a two unique product semigroup defined by permutation relations of quaternion type (with F. cedo, G. Klein),Journal of Algebra 452 (2016) 196--211.
  • Group algebras and semigroup algebras defined by permutation relations of fixed length (with F. Cedo, G. Klein), Journal of Algebra and its applications, Vol. 15, No. 2 (2016) 1650037 (7 pages). DOI: 10.1142/S0219498816500377 (online). ISBN-ISSN: 0219-4988
  • Prime ideals in algebras determined by submonoids of nilpotent groups (with J. Okninski), Algebras and Representation theory, Vol. 18, No.4, 1--15. DOI 10.1007/s10468-015-9559-2 (online).
  • Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids (with J. Okninski, M. Van Campenhout), J. Algebra 440 (2015), 72-99.
  • Behaviour of the Frobenius map in a noncommutative world (with D. Riley), J. Algebra 38 (2015) 7--23. ISSN 0021--8693.
  • Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces (with A. Kiefer, A. del Rio), Mathematics of Computation, accepted 23 april 2015, 38 pages.
  • Finitely Presented Monoids and Algebras defined by Permutation Relations of Abelian Type, II (with F. Cedo, G. Klein), Journal of Pure and Applied Algebra 219 (2015), 1095--1102.
  • Krull orders in nilpotent groups (with J. Okninski), Archiv der Mathematik 103 (2014), 27--37.
  • Nilpotent groups of class three and braces (with F. Cedo, J. Okninski), Publ. Mat. 60 (2016), 55--79
  • Multiplicatively collapsing and rewritable algebras (with D. Riley, M. Shayada), Proceedings Amer. Math. Soc. 143 (2015), 4223--4236.
  • Revisiting Poincare's Theorem on presentations of discontinuous groups via fundamental polyhedra (with A. Kiefer, A. del Rio), Expositiones Mathematicae 33 (2015) pp. 401--430.
  • Finite semigroups that are minimal for not being Malcev nilpotent (with M.H. Shahzamanian), Journal of Algebra and Its Applications Vol. 13, No. 8 (2014) 1450063-1 -- 1450063-22
  • From the Poincare Theorem to generators of the unit group of integral group rings of finite groups (with S.O. Juriaans, A. Kiefer, A. de A. e Silva, A.C. Souza), Math. Comp. 84 (2015), no. 293, 1489--1520.
  • Braces and the Yang-Baxter equation (with F. Cedo, J. Okninski) Comm. Math. Phys. 327 (2014), no. 1, 101--116.
  • Group rings of finite strongly monomial groups: central units and primitive idempotents (with G. Olteanu, I. Van Gelder), J. Algebra 387 (2013) 99-116.
  • A description of a class of finite semigroups that are near to being Malcev nilpotent (with M.H. Shahzamanian), J. Algebra Appl. 12, 1250221 (2013) [26 pages]
  • Central units of integral group rings (with G. Olteanu, I. Van Gelder), Proc. Amer. Math. Soc., 142 (2014), 2193--2209.
  • Writing units of integral group rings of finite abelian groups as a product of Bass units (with A. del Rio, I. Van Gelder), Math. Comp. 83 (2014), no. 285, 461--473.

Publication List


  • E. G. Goodaire, E. Jespers and C. Polcino Milies, Alternative loop rings, North-Holland Mathematics Studies Vol.184, Amsterdam, (1996).
  • E. Jespers and J. Okninski, Noetherian semigroup algebras, Series: Algebra and Applications, Vol. 7, 2007, Approx. 365 p., Hardcover ISBN-10: 1-4020-5809-8 ISBN-13: 978-1-4020-5809-7
  • E. Jespers, A. del Rio, Group Ring Groups, Vol 1: Orders and Generic Constructions of Units, De Gruyter, Berlin, 447 pages, 2015. ISBN 978-3-11-037278-6, eBook (PDF) ISBN 978-3-11-037294-6, eBook (EPUB) ISBN 978-3-11-038617-2.
  • E. Jespers, A. del Rio, Group Ring Groups, Vol 2: Structure Theorems of Unit Groups, De Gruyter, De Gruyter, Berlin, 217 pages. 2015. ISBN 978-3-11-041149-2, eBook (PDF) ISBN 978-3-11-041150-8, eBook (EPUB) ISBN 978-3-11-041275-8.

Previous Conferences

Conferences and seminars



Teaching tasks

First Semester 2019-2020

  • Ring- en Moduultheorie (Ba2)
  • Associatieve Algebra (MA), donderdag 09-11 uur, G.6.322


Second Semester 2019-2020

  • Inleiding Groepentheorie (Ba1)


  • pdf Slides Lineaire Algebra
  • pdf Syllabus Ring- en moduultheorie
  • pdf Syllabus Galoistheorie
  • pdf Syllabus Associatieve Algebra
  • pdf Syllabus Functionaal Analyse I
  • pdf Syllabus Non-commutative algebra
  • pdf Syllabus Inleiding groepentheorie


Projecten Algebra II
  • ps Info computer en latex
  • pdf Latex Info
  • pdf Short Introduction to Latex
  • pdf Projecten 1
  • pdf Projecten 2
  • tex Nuttige latex file 1
  • tex Nuttige latex file 2
  • ps Nuttige ps-file
Projecten Ba 3

Een lijst met topics vind je hier




©2004 • Vrije Universiteit Brussel • Pleinlaan 2 • 1050 Elsene • Tel.: 02/629.21.11 • info@vub.ac.be