Matrix Wreath Products of Algebras.

E. Zelmanov

Spa, June, 2017

This is a joint work with A. Alahmadi, H. Alsulami, S. K. Jain.

Wreath Product of Groups: \(G_2 \wr G_1 = G_2 \times \text{Fun}(G_2, G_1); g \in G_2, f: G_2 \to G_1 \)

\((g^{-1} f g)(g') = f(g g').\)

\(F\) a field; \(A, B\) are associative \(F\)-algebras.
Lin (B, A) = vector space of all linear transformations B → A.

\[A \triangleright B = B + \text{Lin} (B, B \otimes_f A) \]

Multiplication. Let \(f, g \in \text{Lin} (B, B \otimes_f A) \).

Let \(b \in B \), \(g(b) = \sum_i b_i \otimes a_{i} \),

\[f(b_i) = \sum_j b_{ij} \otimes a_{ij} \] Then \((fg)(b) = \sum b_{ij} \otimes a_{ij} a_i \).

\[
\begin{align*}
(fh)(b') &= f(bb') \\
(bf)(b') &= (b \otimes 1)f(b')
\end{align*}
\]

\[f(b') = \sum_i b_i \otimes a_i \]

\[(bf)(b') = \sum_i bb_i \otimes a_i \]
Thm. \(A \trianglelefteq B \) is an associative algebra.

We assume: \(B \cong 1, \) \(B \) is finitely generated, \(\dim_F B = 2^{2^a}. \)

\(\{ b_i \}_{i \in I} \) basis of \(B. \)

\(M_{I \times I} (A) = I \times I \) matrices having finitely many \(\neq 0 \) entries in each column.

Once we fix a basis:

\[\text{Lin}(B, B \otimes F A) \cong M_{I \times I} (A) \]

\[A \trianglelefteq B = B + M_{I \times I} (A). \]
G_1, G_2 groups, then

$$G_1 \rtimes G_2 \rightarrow (FG_1 \rtimes FG_2)^*$$

$f \in \text{Fun}(G_2, G_1)$, $f \Rightarrow$ diagonal matrix.

Inspired by:

(1) Jason Bell, Lance Small, Agata Smoktunowicz, Primitive algebraic algebras of polynomially bounded growth, 2012;

\(M_{\infty}(A) = \{ \text{matrices having finitely many } \neq 0 \text{ entries} \} \)

\(\gamma : B \to A \) \text{ linear map, } C_\gamma : b \mapsto 1 \otimes \gamma(b) \in B \otimes A. \)

All examples below: \textit{finitely generated algebras} \(\langle B, C_\gamma \rangle. \)

\textbf{Embedding Theorems.}

\textit{G. Higman, B. Neumann, H. Neumann}, 1949:

\textit{G countable group} \(\rightarrow \) \textit{finitely generated group.}

\textit{A. I. Malcev}, 1952: \textit{A associative,}

\(\dim_f A \leq \aleph_0 \rightarrow \textit{finitely generated associative algebra.} \)
A. I. Shirshov, 1958: A Lie algebra, \[\dim_F L \leq \frac{1}{2}, \] \[\iff \text{finitely generated Lie algebra}. \]

Can A be embedded as a (right, left) ideal? NO, but

Alahmadi, Alsulami, 2014: \[A \rightarrow M_\infty (A) \supset B, \]
\[B \text{ is finitely generated}. \]

A is \(\infty \)-embeddable as an ideal.

Radical Algebras.

A is \(\text{nil} \) if \(\forall a \in A \ a^n = 0. \)

\[\text{Nil}(A) \subseteq \text{Jac}(A) \]
\[\text{nil radical} \]

and Jacobson radicals of A.
Amitsur Problem: A finitely generated \Rightarrow

$\text{Jac}(A) = \text{Nil}(A)$.

Yes, if F is uncountable.

K. Beidar, 1981: example.

J. Bell, 2003: more examples with finite Gelfand-Kirillov dimension.

Thm. (1) A countable dimensional Jacobson radical algebra $A \rightarrow$ finitely generated Jacobson radical algebra A'.
(2) If countable, $GKdim(A) \leq d \Rightarrow GKdim(A^d) \leq d + 6$.

Kurosh Problem: (1) Is a finitely generated nil algebra nilpotent?

(2) Is a finitely generated algebraic algebra finite dimensional?

Golod–Shafarevich, 1964: NO.

T. Lenagan - A. Smoktunowicz, 2007: If countable, \exists a finitely generated infinite dimensional nil algebra B of $GKdim(B) < \infty$.
2012: F countable, E a finitely generated infinite dimensional nil algebra B of $GKdim(B) \leq 3$.

$\hat{B} = B + F1$ unital hull.

We consider: $A \in \hat{B}$ and the subalgebra $\langle B, Cx \rangle$.

Nil Algebras.

A is **stable nil** (resp. **stable algebraic**) if

$\forall n \geq 1 \quad M_n(A)$ in nil (resp. algebraic).

Thm. (1) A stable nil, $dim_p A \leq 3 \rightarrow$ finitely generated stable nil algebra A',

(2) F countable, $GKdim(A) \leq d \rightarrow GKdim(A') \leq d + 6$.
Primitive Algebras.

A is (left) primitive if \(\exists \) an irreducible faithful module \(A \mathcal{M} \).

Kaplansky: \(\exists \) finitely generated infinite dimensional algebraic primitive algebra.

J. Bell - L. Small, 2002: YES.

J. Bell - L. Small - A. Smoktunowicz, 2012:

F countable, examples of finite G+K-dimension.

Theorem. (1) A stable algebraic primitive algebra, \(\dim F \leq 2 \), in \(\mathcal{M}_{\infty} \)-embeddable as a left ideal in a 2-generated algebraic primitive algebra;

(2) F countable, \(GKdim(A) \leq d \Rightarrow GKdim(A) \leq d+6. \)
Algebras of Subexponential Growth.

\[A = \langle V \rangle , \dim_p V < \infty \]

\[V^n = \text{Span} \{ v_1 \ldots v_k | v_i \in V, k \leq n \} \]

\[V' \leq V^2 \leq \ldots , \ U V^n = A, \dim_p V^n < \infty \]

\[g(n, V) = \dim_p V^n \] growth function of \(A \) that corresponds to \(V \).

\[N = \{ 1, 2, \ldots \} ; \ f, g : N \to [1, \infty) \]

we say that \(f \preceq g \) (asymptotically less or equal to \(g \)) if \(\exists c \in N : \)

\[f(n) \leq c g(cn) \ \forall n \geq 1 \]

If \(f \preceq g, g \preceq f \) then \(f \asymp g \), asymptotically equivalent.
If \(A = \langle V \rangle = \langle W \rangle \), \(\dim_f V < \infty \),
\(\dim_f W < \infty \) then \(g(V, n) \sim g(W, n) \)
\(G_A (n) = \text{class of equivalence} \).

A has polynomially bounded growth if
\(\exists \alpha > 0 : G_A (n) \leq n^\alpha \). Then
\(\inf \{ \alpha > 0 | G_A \leq n^\alpha \} = \text{SDK} \dim_f (A) \).

\(f(n) \) is subexponential if
\[
\frac{f(n)}{e^{\alpha n}} \to 0 \quad n \to \infty \quad \forall \alpha > 0.
\]

\(f(n) \) is intermediate if subexponential
and faster than any polynomial.

A be a not necessarily finitely generated algebra.

A is \textit{locally subexponential} if \(A \) finitely generated subalgebra \(B \trianglelefteq A \) \(g_B(n) \) is subexponential.

Growth of \(A \) is locally \(\leq f(n) \) if \(A \) finitely generated subalgebra \(B \trianglelefteq A \) \(g_B(n) \leq f(n) \).

L. Bartholdi - A. Erschler, 2014:

a countable locally subexponential group \(\rightarrow \) finitely generated group of subexponential growth.
\[f, g : N \to [1, \infty) \quad f \preceq_w g \text{ weakly} \]

asymptotically less or equal than \(g \)

if \(\forall a \geq 0 \quad f \leq gn^a. \)

\[f \succeq_w g \text{ if } f \preceq_w g, \quad g \succeq_w f. \]

A function \(h(n) \) is superlinear if

\[\frac{h(n)}{n} \to \infty \text{ as } n \to \infty. \]

Theorem. Let \(f(n) \) be an increasing function; \(A \) is a countable dimensional algebra whose growth is locally \(\preceq_w f(n) \). Let \(h(n) \) be superlinear. Then \(A \to 2 \)-generated algebra \(G_B \preceq_w f(h(n))n^2. \)
Remark. This is a M_{∞}-embedding as a left ideal.

Theorem. A countable dimensional algebra of locally subexponential growth \rightarrow 2-generated algebra of subexponential growth.

Theorem (Alahmadi-Alsulami). Let char $F \neq 2$. Then a countable dimensional Lie algebra A of locally subexponential growth \rightarrow finitely generated Lie algebra of subexponential growth.

Question (Bell-Small-Smoktunowicz, 2012): is it true that \forall sufficiently large α \exists a finitely generated A_α with $GKdim (A_\alpha) = \alpha$?
Theorem: If countable. Then \(\forall \alpha \geq 8 \exists A_\alpha \text{ with } Gkdim (A_\alpha) = \alpha, \ A_\alpha \text{ is nil.} \)

Bozho-Kraft: \(\forall \alpha \geq 2 \quad \alpha = Gkdim (A_\alpha) \)

U. Vishne: \(\forall \alpha \geq 2 \quad \alpha = Gkdim (A_\alpha), A_\alpha \text{ is primitive.} \)

which functions are asymptotically equivalent to growth functions of groups, algebras ?

\((*)\) \(f(n) \) increases, \(f(m+n) \leq f(m) \cdot f(n) \).

Theorem (Bartholdi-Erschler)

Let \(\alpha \) be a positive root of \(x^3 - x^2 - 2x - 4 = 0 \), \(\alpha \approx 2.48 \); let \(\beta = \log_2 \alpha \approx 0.76 \).

If \(e^{n \beta} \leq f(n) \leq e^n \) then \(f(n) \sim \text{growth function.} \)
Question. Let \(g : \mathbb{N} \to \mathbb{N} \) be an increasing function, \(g(m+n) \leq g(m)g(n) \), and \(n^2 \leq g(n) \). Is \(g(n) \) asymptotically equivalent to the growth function of some finitely generated associative algebra?

Conjecture. For all sufficiently large functions \(g : \mathbb{N} \to \mathbb{N} \) the following assertions are equivalent:

1. \(g \sim g_A \), \(A \) a finitely generated associative algebra;
2. \(g \sim g_A \), \(A \) primitive;
3. \(g \sim g_A \), \(A \) is nil.