The algebraic structure of semi-brace

Paola Stefanelli

paola.stefanelli@unisalento.it

Università del Salento

Spa, 22 June 2017
We introduce the *semi-brace*, an algebraic structure that allows us to obtain left non-degenerate solutions of the Yang-Baxter equation.

If X is a set, a (set-theoretical) **solution** of the Yang-Baxter equation $r : X \times X \to X \times X$ is a map such that the well-known *braid equation*

$$r_1 r_2 r_1 = r_2 r_1 r_2$$

is satisfied, where $r_1 = r \times \text{id}_X$ and $r_2 = \text{id}_X \times r$.

If $a, b \in X$, we denote $r(a, b) = (\lambda_a(b), \rho_b(a))$ where λ_a, ρ_b are maps from X into itself.

In particular, we say that r is **left** (right, resp.) **non-degenerate** if λ_a (ρ_a, resp.) is bijective, for every $a \in X$. Moreover, r is **non-degenerate** if r is both left and right non-degenerate.
In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a brace, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call zero skew brace. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a brace, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call zero skew brace. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a brace, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call zero skew brace. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a brace, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call zero skew brace. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$.

We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let \(B \) be a set with two operations \(+\) and \(\circ\) such that \((B,+)\) and \((B,\circ)\) are groups. We say that \((B,+ ,\circ)\) is a **skew (left) brace** if

\[
a \circ (b + c) = a \circ b - a + a \circ c,
\]

holds for all \(a, b, c \in B \), where \(-a\) is the inverse of \(a \) with respect to \(+\).

We may prove that the identity 0 of \((B,+)\) is also the identity of \((B,\circ)\).

If the group \((B,+)\) is abelian, then \((B,+ ,\circ)\) is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if \((B,+)\) is a group and we set \(a \circ b := a + b \), for all \(a, b \in B \), then \((B,+ ,\circ)\) is a skew brace, that we call **zero skew brace**. If \((B,+)\) is a non-abelian group then \(B \) is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call **zero skew brace**. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let B be a set with two operations $+$ and \circ such that $(B, +)$ and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b + c) = a \circ b - a + a \circ c,$$

holds for all $a, b, c \in B$, where $-a$ is the inverse of a with respect to $+$. We may prove that the identity 0 of $(B, +)$ is also the identity of (B, \circ).

If the group $(B, +)$ is abelian, then $(B, +, \circ)$ is a brace, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if $(B, +)$ is a group and we set $a \circ b := a + b$, for all $a, b \in B$, then $(B, +, \circ)$ is a skew brace, that we call zero skew brace. If $(B, +)$ is a non-abelian group then B is a skew brace that is not a brace.
Skew Braces

In 2016, Guarnieri and Vendramin introduced a new algebraic structure, the skew braces, in order to obtain bijective solutions not necessarily involutive.

Definition

Let \(B \) be a set with two operations \(+\) and \(\circ\) such that \((B, +)\) and \((B, \circ)\) are groups. We say that \((B, +, \circ)\) is a **skew (left) brace** if

\[
a \circ (b + c) = a \circ b - a + a \circ c,
\]

holds for all \(a, b, c \in B\), where \(-a\) is the inverse of \(a\) with respect to \(+\).

We may prove that the identity \(0\) of \((B, +)\) is also the identity of \((B, \circ)\).

If the group \((B, +)\) is abelian, then \((B, +, \circ)\) is a **brace**, the algebraic structure introduced by Rump, in the reformulation provided by Cedó, Jespers and Okniński.

Clearly, every brace is a skew brace. Further, if \((B, +)\) is a group and we set \(a \circ b := a + b\), for all \(a, b \in B\), then \((B, +, \circ)\) is a skew brace, that we call **zero skew brace**. If \((B, +)\) is a non-abelian group then \(B\) is a skew brace that is not a brace.
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) semi-brace if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b + a \circ c = a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b + 0 - a + a \circ c = a \circ (b + c).$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a *(left) semi-brace* if

$$a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$$

holds for all $a, b, c \in B$, where a^{-} is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

\Rightarrow $(B, +)$ is a group and, in particular, a left cancellative semigroup;

\Rightarrow if $a, b, c \in B$ then

$$a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ a^{-} + a \circ c = a \circ b + a + a \circ c = a \circ b + a + a \circ c = a \circ (b + c).$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) semi-brace if

$$ a \circ (b + c) = a \circ b + a \circ (a^- + c), $$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

 $$ a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 + a \circ c = a \circ b + a \circ c = a \circ (b + c) $$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then
 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b + a \circ c = a \circ (b + c).$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then
 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 - a + a \circ c = a \circ (c + b) = a \circ (b + c).$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then
 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c = a \circ (b + c).$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$$

holds for all $a, b, c \in B$, where a^{-} is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then
 $$a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ a^{-} + a \circ c$$
 $$= a \circ b + 0 - a + a \circ c = a \circ b + a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- = a \circ 0 = a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a \textbf{(left) semi-brace} if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- - a + a \circ c$$
 $$= a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c$$
 $$= a \circ (b + c)$$
We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^- + c),$$

holds for all $a, b, c \in B$, where a^- is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then
 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ a^- - a + a \circ c$$
 $$= a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c$$
 $$= a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a *(left) semi-brace* if

$$a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$$

holds for all $a, b, c \in B$, where a^{-} is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

 $$a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ a^{-} - a + a \circ c$$

 $$= a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c$$

 $$= a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a *(left) semi-brace* if

$$a \circ (b + c) = a \circ b + a \circ (a^\circ + c),$$

holds for all $a, b, c \in B$, where a° is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^\circ + c) = a \circ b + a \circ a^\circ - a + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c = a \circ (b + c)$$

P. Stefanelli (UniSalento)
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) semi-brace if

$$a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$$

holds for all $a, b, c \in B$, where a^{-} is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ a^{-} - a + a \circ c = a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c = a \circ (b + c)$$
Semi-braces

We introduced a generalization of skew braces.

Definition (F. Catino, I. Colazzo, and P.S., J. Algebra, 2017)

Let B be a set with two operations $+$ and \circ such that $(B, +)$ is a left cancellative semigroup and (B, \circ) is a group. We say that $(B, +, \circ)$ is a **(left) semi-brace** if

$$a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$$

holds for all $a, b, c \in B$, where a^{-} is the inverse of a with respect to \circ.

Note that, if B is a skew brace, then it is a semi-brace. In fact

- $(B, +)$ is a group and, in particular, a left cancellative semigroup;
- if $a, b, c \in B$ then

$$a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ a^{-} - a + a \circ c$$
$$= a \circ b + 0 - a + a \circ c = a \circ b - a + a \circ c$$
$$= a \circ (b + c)$$
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,

 \(\begin{align*}
 \triangleright & \quad (E, +) \text{ is a left cancellative semigroup;} \\
 \triangleright & \quad \text{if } a, b, c \in B, \text{ then } a \circ b + a \circ (a^{-} + c) = a \circ c = a \circ (b + c).
 \end{align*}\)

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

 \[a + b := b \circ f(a),\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,

\(\begin{align*}
\triangleright & \quad + \text{ is associative;} \\
\triangleright & \quad (B, +) \text{ is left cancellative;} \\
\triangleright & \quad \text{if } a, b, c \in B, \text{ then} \\
& \quad a \circ b + a \circ (a^{-} + c) = a \circ c = a \circ (b + c).
\end{align*}\)
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the \textbf{trivial semi-brace}.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\).

Set

\[
a + b := b \circ f(a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- \(+\) is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then

\[
a \circ b + a \circ (a^- + c) = a \circ b + a \circ c \circ f(a) = a \circ c \circ f(a^- + c) = a \circ (b + c).
\]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

 We call this semi-brace the trivial semi-brace.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

 \[a + b := b \circ f(a), \]

 for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - \(\circ\) is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[a \circ b + a \circ (a^- + c) = a \circ b + a \circ f(a) = a \circ c = a \circ (b + c). \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the \textbf{trivial semi-brace}.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set
 \[
 a + b := b \circ f(a),
 \]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - \(+\) is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[
 a \circ b + a \circ (a^- + c) = a \circ f(a) + a \circ (a^- + c) = a \circ f(a^- + c) = a \circ b + a \circ (a^- + c) = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^{-} + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[
a + b := b \circ f(a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - + is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[
a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ f(a^{-}) = a \circ (a^{-} + c) = a \circ (b + c).
\]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 \begin{itemize}
 \item \((E, +)\) is a left cancellative semigroup;
 \item if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).
 \end{itemize}
 We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\).
 Set
 \[a + b := b \circ f(a),\]
 for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 \begin{itemize}
 \item + is associative;
 \item \((B, +)\) is left cancellative;
 \item if \(a, b, c \in B\), then
 \[a \circ b + a \circ (a^- + c) = a \circ b + a \circ f(a^-) = a \circ f(a^-) + a \circ c = a \circ (b + c) = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[
a + b := b \circ f(a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - \(+\) is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[
a \circ b + a \circ (a^- + c) = a \circ b + a \circ c \circ f(a^- + c) = a \circ c \circ f(a^-) + c \circ f(a^-) = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[
a + b := b \circ f(a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- \(+\) is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then

\[
a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c).
\]
Examples of semi-braces

1. If (E, \circ) is a group, then $(E, +, \circ)$, where $a + b = b$, for all $a, b \in E$ is a semi-brace. In fact,
 - $(E, +)$ is a left cancellative semigroup;
 - if $a, b, c \in B$, then $a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)$.

We call this semi-brace the **trivial semi-brace**.

2. If (B, \circ) is a group and f is an endomorphism of (B, \circ) such that $f^2 = f$. Set

 $$a + b := b \circ f(a),$$

for all $a, b \in B$, then $(B, +, \circ)$ is a semi-brace. In fact,

 - if $a, b, c \in B$, then $a + (b + c) = a + (c \circ f(b)) = c \circ f(b) \circ f(a) = c \circ f(b) \circ f^2(a) = c \circ f(b \circ f(a)) = (a + b) + c$
 - $(B, +)$ is left cancellative;
 - if $a, b, c \in B$, then

 $$a \circ b + a \circ (a^- + c) = a \circ b + a \circ c \circ f(a^- + c) = a \circ c \circ f(a^- + c) = a \circ (b + c).$$
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^{-} + c) = a \circ c = a \circ (b + c)\).

 We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

 \[a + b := b \circ f(a), \]

 for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - \(+\) is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[a \circ b + a \circ (a^{-} + c) = a \circ b + a \circ f(a^{-} + c) = a \circ c = a \circ (b + c). \]
Examples of semi-braces

1. If (E, \circ) is a group, then $(E, +, \circ)$, where $a + b = b$, for all $a, b \in E$ is a semi-brace. In fact,
 - $(E, +)$ is a left cancellative semigroup;
 - if $a, b, c \in B$, then $a \circ b + a \circ (a^c + c) = a \circ c = a \circ (b + c)$.

 We call this semi-brace the **trivial semi-brace**.

2. If (B, \circ) is a group and f is an endomorphism of (B, \circ) such that $f^2 = f$. Set

 \[a + b := b \circ f(a), \]

 for all $a, b \in B$, then $(B, +, \circ)$ is a semi-brace. In fact,
 - $+$ is associative;
 - if $a, b, c \in B$, such that $a + b = a + c$, then $b \circ f(a) = c \circ f(a)$, i.e., $b = c$
 - if $a, b, c \in B$, then

 \[
 a \circ b + a \circ (a^c + c) = a \circ c + a \circ f(a - a \circ b + a \circ b) = a \circ c = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\).

Set

\[
a + b := b \circ f (a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- \(+\) is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then
 \[
a \circ b + a \circ (a^- + c) = a \circ b + a \circ c \circ f (a^- + c) = a \circ c = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the \textbf{trivial semi-brace}.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[a + b := b \circ f(a), \]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- \((B, +)\) is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then
 \[a \circ b + a \circ (a^- + c) = a \circ b + a \circ c \circ f(a^-) = a \circ c \circ f(a^-) \circ f(a \circ b) = a \circ c \circ f(a^- \circ a \circ b) = a \circ c \circ f(b) = a \circ (b + c). \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the \textbf{trivial semi-brace}.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[a + b := b \circ f(a), \]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- + is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then

\[
\begin{align*}
 a \circ b + a \circ (a^- + c) &= a \circ b + a \circ c \circ f(a^-) = a \circ c \circ f(a^-) \circ f(a \circ b) \\
 &= a \circ c \circ f(a^- \circ a \circ b) = a \circ c \circ f(b) \\
 &= a \circ (b + c).
\end{align*}
\]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\), is a semi-brace. In fact,

 - \((E, +)\) is a left cancellative semigroup;

 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^− + c) = a \circ c = a \circ (b + c)\).

 We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

 \[a + b := b \circ f (a),\]

 for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,

 - + is associative;

 - \((B, +)\) is left cancellative;

 - if \(a, b, c \in B\), then

 \[a \circ b + a \circ (a^− + c) = a \circ c \circ f (a^−) = a \circ c \circ f (a^−) \circ f (a \circ b) = a \circ c \circ f (a \circ b) = a \circ (b + c).
 \]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^- + c) = a \circ c = a \circ (b + c)\).
 We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

 \[\begin{align*}
 a + b & := b \circ f (a),
 \end{align*}\]

 for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
 - + is associative;
 - \((B, +)\) is left cancellative;
 - if \(a, b, c \in B\), then
 \[\begin{align*}
 a \circ b + a \circ (a^- + c) &= a \circ b + a \circ c \circ f (a^-) = a \circ c \circ f (a^-) \circ f (a \circ b) \\
 &= a \circ c \circ f (a^- \circ a \circ b) = a \circ c \circ f (b) \\
 &= a \circ (b + c).
 \end{align*}\]
Examples of semi-braces

1. If \((E, \circ)\) is a group, then \((E, +, \circ)\), where \(a + b = b\), for all \(a, b \in E\) is a semi-brace. In fact,
 - \((E, +)\) is a left cancellative semigroup;
 - if \(a, b, c \in B\), then \(a \circ b + a \circ (a^− + c) = a \circ c = a \circ (b + c)\).

We call this semi-brace the **trivial semi-brace**.

2. If \((B, \circ)\) is a group and \(f\) is an endomorphism of \((B, \circ)\) such that \(f^2 = f\). Set

\[
a + b := b \circ f (a),
\]

for all \(a, b \in B\), then \((B, +, \circ)\) is a semi-brace. In fact,
- + is associative;
- \((B, +)\) is left cancellative;
- if \(a, b, c \in B\), then
 \[
 a \circ b + a \circ (a^− + c) = a \circ c \circ f (a^−) = a \circ c \circ f (a^−) \circ f (a \circ b) = a \circ c \circ f (a^− \circ a \circ b) = a \circ c \circ f (b) = a \circ (b + c).
 \]
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y) = x + y.$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y) = x \circ x^- + x \circ y^- = x + y$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^{-} + x^{-} \circ y)$, then

$$x + t = x + x \circ (x^{-} + x^{-} \circ y) = x \circ (0 + x^{-} \circ y) = x + x^{-} \circ y$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure – I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a **right group** if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^\perp + x^\perp \circ y)$, then

$$x + t = x + x \circ (x^\perp + x^\perp \circ y) = x \circ (0 + x^\perp + x^\perp \circ y)$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- \circ (x^- + x^- \circ y)) = x \circ 0 + x \circ (x^- \circ y) = x + x \circ y$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y)$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure – 1

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a **right group** if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y) = x \circ y$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a **right group** if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y) = x \circ (0 + x^-) = x$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a **right group** if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^{-} + x^{-} \circ y)$, then

$$x + t = x + x \circ (x^{-} + x^{-} \circ y) = x \circ (0 + x^{-} \circ y)$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- + x^- \circ y) = x \circ (0 + x^- \circ y) = x \circ 0 + x \circ x^- \circ y = 0 + x \circ x^- \circ y$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure – I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a right group if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^+ + x^+ \circ y)$, then

$$x + t = x + x \circ (x^+ + x^+ \circ y) = x \circ (0 + x^+ \circ y) = x \circ x^+ \circ y = y.$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if \(B \) is a semi-brace and 0 is the identity of \((B, \circ) \), then 0 is a left identity (and, also, an idempotent) of \((B, +) \). In fact if \(a \in B \), then

\[
0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a
\]

and, by left cancellativity, we have that \(a = 0 + a \).

Recall that a left cancellative semigroup \(B \) is a right group if and only if for all \(x, y \in B \) there exists \(t \in B \) such that \(x + t = y \).

If \(B \) is a semi-brace, \(x, y \in B \) and we set \(t := x \circ (x^- + x^- \circ y) \), then

\[
x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- \circ y) = x \circ x^- \circ y = y.
\]

Hence, the additive structure \((B, +) \) is a right group.
The additive structure - I

Note that, if B is a semi-brace and 0 is the identity of (B, \circ), then 0 is a left identity (and, also, an idempotent) of $(B, +)$. In fact if $a \in B$, then

$$0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a$$

and, by left cancellativity, we have that $a = 0 + a$.

Recall that a left cancellative semigroup B is a **right group** if and only if for all $x, y \in B$ there exists $t \in B$ such that $x + t = y$.

If B is a semi-brace, $x, y \in B$ and we set $t := x \circ (x^- + x^- \circ y)$, then

$$x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- \circ y) = x \circ x^- \circ y = y.$$

Hence, the additive structure $(B, +)$ is a right group.
The additive structure - I

Note that, if \(B \) is a semi-brace and 0 is the identity of \((B, \circ)\), then 0 is a left identity (and, also, an idempotent) of \((B, +)\). In fact if \(a \in B \), then

\[
0 + a = 0 \circ (0 + a) = 0 \circ 0 + 0 \circ (0 + a) = 0 + 0 + a
\]

and, by left cancellativity, we have that \(a = 0 + a \).

Recall that a left cancellative semigroup \(B \) is a right group if and only if for all \(x, y \in B \) there exists \(t \in B \) such that \(x + t = y \).

If \(B \) is a semi-brace, \(x, y \in B \) and we set \(t := x \circ (x^- + x^- \circ y) \), then

\[
x + t = x + x \circ (x^- + x^- \circ y) = x \circ (0 + x^- \circ y) = x \circ x^- \circ y = y.
\]

Hence, the additive structure \((B, +)\) is a right group.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

\[B = G + E. \]

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
The additive structure – II

Moreover, it is well-known that if \(B \) is a right group, \(E \) is the set of idempotents, then \(G_e := B + e \), for every \(e \in E \), is a group and \(B = G_e + E \).

In particular, if \(B \) is a semi-brace and \(E \) is the set of idempotents of \((B, +)\), then the identity 0 of the group \((B, \circ)\) lies in \(E \). Therefore \(G := B + 0 \) is a group with respect to the sum and

\[B = G + E. \]

In addition, we may prove that \((G, \circ)\) and \((E, \circ)\) are groups and so \((G, +, \circ)\) is a skew brace and \((E, +, \circ)\) is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
The additive structure – II

Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$\quad B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
The additive structure - II

Moreover, it is well-known that if B is a right group, E is the set of idempotents, then $G_e := B + e$, for every $e \in E$, is a group and $B = G_e + E$.

In particular, if B is a semi-brace and E is the set of idempotents of $(B, +)$, then the identity 0 of the group (B, \circ) lies in E. Therefore $G := B + 0$ is a group with respect to the sum and

$$B = G + E.$$

In addition, we may prove that (G, \circ) and (E, \circ) are groups and so $(G, +, \circ)$ is a skew brace and $(E, +, \circ)$ is a trivial semi-brace.
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \rightarrow B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\text{ker} f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \text{ker} f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \text{Im} f.
\]
Examples

▶ If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

▶ If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = 0 \iff x \in \text{Im} f.
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \rightarrow B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
\begin{align*}
x \in E & \iff x + x = x \iff x \circ f(x) = x \iff 0 = 0 \iff x \in \ker f. \\
\end{align*}
\]

and

\[
\begin{align*}
x \in G & \iff x + 0 = x \iff 0 \circ f(x) = x \iff x = x. \\
\end{align*}
\]
Examples

- If $(E, +, \circ)$ is a trivial semi-brace, then the set of idempotents of $(E, +)$ is E and the group $G = \{0\}$.

- If $(B, +, \circ)$ is the semi-brace where $f : B \to B$ is an endomorphism of the group (B, \circ), $f^2 = f$ and $a + b = b \circ f(a)$, for all $a, b \in B$. The set of idempotents of $(B, +)$ is $\ker f$ and the group $G := B + 0$ is $\text{Im } f$. In fact,

$$x \in E \iff x + x = x \iff x \circ f(x) = x \iff x \in \ker f,$$

and

$$x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \ker f.$$
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im } f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = 0 \iff x \in \text{Im } f.
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \rightarrow B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

 \[
 x \in E \iff x + x = x \iff x \circ f(x) = x \iff x \in \ker f.
 \]

 and

 \[
 x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \text{Im} f.
 \]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
\begin{align*}
x \in E & \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \\
& \iff x \in \ker f.
\end{align*}
\]

and

\[
\begin{align*}
x \in G & \iff x + 0 = x \iff 0 \circ f(x) = x \iff f(x) = 0 \\
& \iff x \in \ker f.
\end{align*}
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \rightarrow B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im } f\). In fact,

\[
\begin{align*}
x \in E & \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \\
& \iff x \in \ker f.
\end{align*}
\]

and

\[
\begin{align*}
x \in G & \iff x + 0 = x \iff 0 \circ f(x) = x \\
& \iff x \in \text{Im } f.
\end{align*}
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im } f\). In fact,

\[
\begin{align*}
x \in E & \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\end{align*}
\]

and

\[
\begin{align*}
x \in G & \iff x + 0 = x \iff 0 \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\end{align*}
\]
Examples

- If $(E, +, \circ)$ is a trivial semi-brace, then the set of idempotents of $(E, +)$ is E and the group $G = \{0\}$.

- If $(B, +, \circ)$ is the semi-brace where $f : B \to B$ is an endomorphism of the group (B, \circ), $f^2 = f$ and $a + b = b \circ f(a)$, for all $a, b \in B$. The set of idempotents of $(B, +)$ is $\ker f$ and the group $G := B + 0$ is $\operatorname{Im} f$. In fact,

 \[
 x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
 \]

 and

 \[
 x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \operatorname{Im} f.
 \]
Examples

- If $(E, +, \circ)$ is a trivial semi-brace, then the set of idempotents of $(E, +)$ is E and the group $G = \{0\}$.

- If $(B, +, \circ)$ is the semi-brace where $f : B \to B$ is an endomorphism of the group (B, \circ), $f^2 = f$ and $a + b = b \circ f(a)$, for all $a, b \in B$. The set of idempotents of $(B, +)$ is $\ker f$ and the group $G := B + 0$ is $\text{Im } f$. In fact,

 \[x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f. \]

 and

 \[x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \text{Im } f. \]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im } f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \\
\iff x \in \ker f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \text{Im } f.
\]
Examples

- If \((E, +, \circ)\) is a trivial semi-brace, then the set of idempotents of \((E, +)\) is \(E\) and the group \(G = \{0\}\).

- If \((B, +, \circ)\) is the semi-brace where \(f : B \to B\) is an endomorphism of the group \((B, \circ)\), \(f^2 = f\) and \(a + b = b \circ f(a)\), for all \(a, b \in B\). The set of idempotents of \((B, +)\) is \(\ker f\) and the group \(G := B + 0\) is \(\text{Im} f\). In fact,

\[
x \in E \iff x + x = x \iff x \circ f(x) = x \iff f(x) = 0 \iff x \in \ker f.
\]

and

\[
x \in G \iff x + 0 = x \iff 0 \circ f(x) = x \iff x \in \text{Im} f.
\]
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \left\{ \begin{array}{c} g \\ \in G \end{array} \right\} \circ \left\{ \begin{array}{c} g^- \circ (g + e) \\ \in E \end{array} \right\}.$$

In fact,

$$g^- \circ (g + e) + g^- \circ (g + e) = g^- \circ (g + e + e) - g^- \circ (g + e),$$

i.e., $g^- \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).

P. Stefanelli (UniSalento)
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g \circ g_{-} \circ (g + e)}_{\in G}.$$

In fact,

$$g_{-} \circ (g + e) + g_{-} \circ (g + e) = g_{-} \circ (g + e + e) = g_{-} \circ (g + e),$$

i.e., $g_{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

\[
 b = \left(g \circ g^{-} \circ (g + e)\right). \quad \text{for all } g \in G, e \in E
\]

In fact,

\[
 g^{-} \circ (g + e) + g^{-} \circ (g + e) = g^{-} \circ (g + e + e),
\]

i.e., $g^{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g \circ g^- \circ (g + e)}_{\in G} \in G \circ E.$$

In fact,

$$g^- \circ (g + e) + g^- \circ (g + e) = g^- \circ (g + e + e) = g^- \circ (g + e),$$

i.e., $g^- \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).

P. Stefanelli (UniSalento)
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g \circ g^{-} \circ (g + e)}_{\in G} \in G \circ E \in E.$$

In fact,

$$(g^{-} \circ (g + e) + g^{-} \circ (g + e)) = g^{-} \circ (g + e + e) = g^{-} \circ (e + e)$$

i.e., $g^{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).

\[\]
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g}_{\in G} \circ \underbrace{g^- \circ (g + e)}_{\in E}.$$

In fact,

$$g^- \circ (g + e) + g^- \circ (g + e) = g^- \circ (g + e + e) = g^- \circ (g + e),$$

i.e., $g^- \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).

The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g}_{\in G} \circ \underbrace{g^– \circ (g + e)}_{\in E}.$$

In fact,

$$g^– \circ (g + e) + g^– \circ (g + e) = g^– \circ (g + e + e) = g^– \circ (g + e),$$

i.e., $g^– \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).

The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g \circ g^{-} \circ (g + e)}_{\in G} \underbrace{\circ (g + e)}_{\in E}.$$

In fact,

$$g^{-} \circ (g + e) + g^{-} \circ (g + e) = g^{-} \circ (g + e + e) = g^{-} \circ (g + e),$$

i.e., $g^{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g}_{\in G} \circ \underbrace{g^{-}}_{\in E} \circ (g + e).$$

In fact,

$$g^{-} \circ (g + e) + g^{-} \circ (g + e) = g^{-} \circ (g + e + e) = g^{-} \circ (g + e),$$

i.e., $g^{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).
The multiplicative group

Let B be a semi-brace, E the set of idempotents of $(B, +)$, and $G := B + 0$.

- Clearly, we have that $G \cap E = \{0\}$.

- Further, $B = G \circ E$. In fact, if $b \in B$, then there exist $g \in G$ and $e \in E$ such that $b = g + e$ and so

$$b = \underbrace{g \circ g^{-} \circ (g + e)}_{\in G} \in \underbrace{E}_{\in E}.$$

In fact,

$$g^{-} \circ (g + e) + g^{-} \circ (g + e) = g^{-} \circ (g + e + e) = g^{-} \circ (g + e),$$

i.e., $g^{-} \circ (g + e) \in E$.

- Since (G, \circ) and (E, \circ) are groups, we have that (B, \circ) is the matched product of the groups (G, \circ) and (E, \circ).
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an ideal if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an ideal if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an **ideal** if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an ideal if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an ideal if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Ideals of a skew brace

Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an **ideal** if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an ideal if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Guarnieri and Vendramin give the following definition of ideal for a skew brace.

Definition

Let B be a skew brace. A subset I of B is said an *ideal* if

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$, where $\lambda_a(b) := -a + a \circ b$, for all $a, b \in B$.

In particular, if B is a brace, the second condition follows by the first and third ones.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of $(B, ◦)$;
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $λ_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $ρ_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $λ_a : B \to B$ and $ρ_a : B \to B$ are defined respectively by

$$λ_a (b) := a ◦ (a^- + b) \quad \text{and} \quad ρ_a (b) := (b^- + a)^- ◦ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let \(B \) be a semi-brace, \(E \) the set of idempotents of \((B, +)\), \(G := B + 0 \). We say that a subsemigroup \(I \) of \((B, +)\) is an ideal if

- \(I \) is a normal subgroup of \((B, \circ)\);
- \(I \cap G \) is a normal subgroup of \((G, +)\);
- \(\lambda_g(e) \in I \), for all \(g \in G \) and \(e \in I \cap E \);
- \(\rho_b(n) \in I \), for all \(b \in B \) and \(n \in I \cap G \).

Where, if \(a \in B \), \(\lambda_a : B \to B \) and \(\rho_a : B \to B \) are defined respectively by

\[
\lambda_a(b) := a \circ (a^{-} + b) \quad \text{and} \quad \rho_a(b) := (b^{-} + a) \circ a
\]

for every \(b \in B \).

As we expect, \(B \) and \(\{0\} \) are ideals of \(B \) that we call the trivial ideals of \(B \).
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an ideal if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$\lambda_a (b) := a \circ (a^- + b) \quad \text{and} \quad \rho_a (b) := (b^- + a)^- \circ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the trivial ideals of B.
Ideals and examples

Additive and multiplicative structures

Ideals and quotient structures

Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$
\lambda_a (b) := a \circ (a^- + b) \quad \text{and} \quad \rho_a (b) := (b^- + a)^- \circ a
$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.

P. Stefanelli (UniSalento)

The algebraic structure of semi-brace
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)
Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an ideal if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$\lambda_a(b) := a \circ (a^\sim + b) \quad \text{and} \quad \rho_a(b) := \left((b + a)^\sim \circ a\right)$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the trivial ideals of B.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$
\lambda_a (b) := a \circ (a^{-} + b) \quad \text{and} \quad \rho_a (b) := (b^{-} + a) \circ a
$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Ideals of a semi-brace – I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$\lambda_a(b) := a \circ (a^- + b) \quad \text{and} \quad \rho_a(b) := (b^- + a)^- \circ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \rightarrow B$ and $\rho_a : B \rightarrow B$ are defined respectively by

$$\lambda_a(b) := a \circ (a^- + b) \quad \text{and} \quad \rho_a(b) := (b^- + a)^- \circ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Definitions and examples
Additive and multiplicative structures
Ideals and quotient structures

Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an ideal if

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \rightarrow B$ and $\rho_a : B \rightarrow B$ are defined respectively by

$$\lambda_a (b) := a \circ (a^- + b)$$

and

$$\rho_a (b) := (b^- + a) \circ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the trivial ideals of B.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

1. I is a normal subgroup of (B, \circ);
2. $I \cap G$ is a normal subgroup of $(G, +)$;
3. $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
4. $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \rightarrow B$ and $\rho_a : B \rightarrow B$ are defined respectively by

$$\lambda_a(b) := a \circ (a^- + b) \quad \text{and} \quad \rho_a(b) := (b^- + a)^- \circ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Ideals of a semi-brace - I

Definition (F. Catino, I. Colazzo, P. S., J. Algebra, 2017)

Let B be a semi-brace, E the set of idempotents of $(B, +)$, $G := B + 0$. We say that a subsemigroup I of $(B, +)$ is an **ideal** if

- I is a normal subgroup of $(B, ◦)$;
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

Where, if $a \in B$, $\lambda_a : B \to B$ and $\rho_a : B \to B$ are defined respectively by

$$\lambda_a(b) := a ◦ (a^- + b) \quad \text{and} \quad \rho_a(b) := (b^- + a)^- ◦ a$$

for every $b \in B$.

As we expect, B and $\{0\}$ are ideals of B that we call the **trivial ideals** of B.
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ);
- $I \cap G$ is a normal subgroup of $(G, +)$;
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

\[
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^- = (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b(-b + n^- + b))^- \in I.
\]
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✔
- $I \cap G$ is a normal subgroup of $(G, +)$; ✔
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✔
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

$$
\rho_b (n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
$$
$$= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b^- (-b + n^- + b))^- \in I.
$$
Comparison between the two definitions of ideal – I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$.

\[\rho_b (n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^- = (\lambda_b^- (-b + n^- + b))^- \in I. \]
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

$$
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^-
= (\lambda_b(-b + n^- + b))^\perp \in I.
$$
Comparison between the two definitions of ideal - I

If \(B \) is a skew brace and \(I \) is an ideal of \(B \), then \(I \) is an ideal of \(B \) reviewed as a semi-brace. In fact,

- \(I \) is a normal subgroup of \((B, \circ)\);
- \(I \cap G \) is a normal subgroup of \((G, +)\);
- \(\lambda_g (e) \in I \), for all \(g \in G \) and \(e \in I \cap E \);
- \(\rho_b (n) \in I \), for all \(b \in B \) and \(n \in I \cap G \).

\[
\rho_b (n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
\]
\[
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b (b + n^- + b))^- \in I.
\]
Comparison between the two definitions of ideal – I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✔
- $I \cap G$ is a normal subgroup of $(G, +)$; ✔
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$;
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

$$
\rho_b(n) = (n^− + b)^− \circ b = (b^− \circ (n^− + b))^− = (b^− \circ (b − b + n^− + b))^− = (\lambda_b(−b + n^− + b))^− \in I.
$$

P. Stefanelli (UniSalento)
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; $\lambda_g(0) = -g + g \circ 0 = 0 \in I$
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

 $\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^- = (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b(-b + n^- + b))^- \in I$.
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$.

$$
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
$$

$$
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b(-b + n^- + b))^- \in I.
$$
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✓

\[
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
\]

\[
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b(-b + n^- + b))^- \in I.
\]
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✔
- $I \cap G$ is a normal subgroup of $(G, +)$; ✔
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✔
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✔

$$
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b^n^- + b))^-
$$
$$
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_{b^-}(-b + n^- + b))^- \in I.
$$
If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✓

$$
\rho_b (n) = (n^- + b^-)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^- \\
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b^- (-b + n^- + b))^- \in I.
$$
Comparison between the two definitions of ideal – I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✓

\[
\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
\]
\[
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^-
\]
\[
= (\lambda_{b^-}(-b + n^- + b))^- \in I.
\]
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✓
- $I \cap G$ is a normal subgroup of $(G, +)$; ✓
- $\lambda_g(e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✓
- $\rho_b(n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✓

$$\rho_b(n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^-
= (\lambda_b(\underbrace{-b + n^- + b})^-) \in I.$$
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of $(B, \circ); \checkmark$
- $I \cap G$ is a normal subgroup of $(G, +); \checkmark$
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E; \checkmark$
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$. \checkmark

$$
\rho_b (n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^-
= (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^-
= (\lambda_b (-b + n^- + b))^\in I. \checkmark
$$
Comparison between the two definitions of ideal - I

If B is a skew brace and I is an ideal of B, then I is an ideal of B reviewed as a semi-brace. In fact,

- I is a normal subgroup of (B, \circ); ✔
- $I \cap G$ is a normal subgroup of $(G, +)$; ✔
- $\lambda_g (e) \in I$, for all $g \in G$ and $e \in I \cap E$; ✔
- $\rho_b (n) \in I$, for all $b \in B$ and $n \in I \cap G$. ✔

\[
\rho_b (n) = (n^- + b)^- \circ b = (b^- \circ (n^- + b))^- = (b^- \circ (b - b + n^- + b))^- = (b^- \circ b - b^- + b^- \circ (-b + n^- + b))^- = (\lambda_b (-b + n^- + b))^- \in I.
\]
Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✓
- I is a normal subgroup of $(B, +)$; ✓
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✓

\[
\lambda_a(x) = a \circ (a^- + x) = (a^- + x)^- \circ a^- = ((a^- + x - a^- + a^-) \circ a^-)^-
\]
\[
= (\rho_{a^-}(a^- + x - a^-))^- \in I.
\]
Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✔
- I is a normal subgroup of $(B, +)$; ✔
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✔

$$
\lambda_a(x) = a \circ (a^- + x) = ((a^- + x) \circ a^-)^- = ((a^- + x - a^- + a^-) \circ a^-)^- = \left(\rho_a^- (a^- + x - a^-)\right)^- \in I.
$$
Comparison between the two definitions of ideal – II

Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✔
- I is a normal subgroup of $(B, +)$; ✔
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✔

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^- \circ a^-\right)^- = \left((a^- + x - a^- + a^-) \circ a^-\right)^- = \left(\rho_a^{-1}(a^- + x - a^-)\right)^- \in I.
\]
Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✓
- I is a normal subgroup of $(B, +)$; ✓
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✓

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^{\circ} \circ a^-\right)^- = ((a^- + x - a^- + a^-) \circ a^-)^- = \left(\rho_{a^-}(a^- + x - a^-)\right)^- \in I.
\]
Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✓
- I is a normal subgroup of $(B, +)$; ✓
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✓

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x) \circ a^- \right)^- = \left((a^- + x - a^- + a^-) \circ a^- \right) = \left(\rho_a (a^- + x - a^-) \right)^- \in I.
\]
Comparison between the two definitions of ideal - II

Conversely, if \(B \) a skew brace and \(I \) is an ideal of \(B \) reviewed as a semi-brace, then \(I \) is an ideal of the skew brace \(B \). In fact,

- \(I \) is a normal subgroup of \((B, \circ) \); ✔
- \(I \) is a normal subgroup of \((B, +) \); ✔
- \(\lambda_a(I) \subseteq I \), for every \(a \in B \). ✔

\[
\lambda_a(x) = a \circ (a^- + x) = ((a^- + x)^- \circ a^-)^- = ((a^- + x - a^- + a^-) \circ a^-)^- = (\rho_a^- (a^- + x - a^-))^- \in I.
\]
Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ);

- I is a normal subgroup of $(B, +)$;

- $\lambda_a(I) \subseteq I$, for every $a \in B$.

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^- \circ a^-\right)^- = \left((a^- + x - a^- + a^-) \circ a^-\right)^- = \left(\rho_a\left((a^- + x - a^-)\right)\right)^- \in I.
\]
Comparison between the two definitions of ideal - II

Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ);
- I is a normal subgroup of $(B, +)$;
- $\lambda_a(I) \subseteq I$, for every $a \in B$.

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^- \circ a^- \right)^- = \left((a^- + x - a^- + a^-) \circ a^- \right)^- \\
= (\rho_{a^-}(a^- + x - a^-))^- \in I.
\]
Comparison between the two definitions of ideal \(- II\)

Conversely, if \(B\) a skew brace and \(I\) is an ideal of \(B\) reviewed as a semi-brace, then \(I\) is an ideal of the skew brace \(B\). In fact,

\begin{itemize}
 \item \(I\) is a normal subgroup of \((B, \circ)\);
 \item \(I\) is a normal subgroup of \((B, +)\);
 \item \(\lambda_a(I) \subseteq I\), for every \(a \in B\).
\end{itemize}

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^- \circ a^- \right)^- = \left((a^- + x - a^- + a^-) \circ a^- \right)^- \\
= (\rho_{a^-}(a^- + x - a^-))^- \in I.
\]
Comparison between the two definitions of ideal - II

Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✓
- I is a normal subgroup of $(B, +)$; ✓
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✓

\[
\lambda_a(x) = a \circ (a^- + x) = \left((a^- + x)^- \circ a^\circ\right)^- = \left((a^- + x - a^- + a^-) \circ a^-\right)^- = (\rho_a^- (a^- + x - a^-))^- \in I.
\]
Comparison between the two definitions of ideal - II

Conversely, if B a skew brace and I is an ideal of B reviewed as a semi-brace, then I is an ideal of the skew brace B. In fact,

- I is a normal subgroup of (B, \circ); ✓
- I is a normal subgroup of $(B, +)$; ✓
- $\lambda_a(I) \subseteq I$, for every $a \in B$. ✓

\[
\lambda_a(x) = a \circ (a^– + x) = \left((a^– + x)^– \circ a^-\right)^– = \left((a^- + x - a^- + a^-) \circ a^-\right)^– \\
= (\rho_{a^-}(a^– + x - a^-))^– \in I.
\]
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

\begin{itemize}
 \item \(I\) is a normal subgroup of \((B, \circ)\);
 \item \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
 \item \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
 \item \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).
\end{itemize}

But if \(a \in B \setminus I\), then

\[\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✔
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✔
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✔
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✔

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \not\in I,\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).

P. Stefanelli (UniSalento)
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\);
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\);
- \(\lambda_0(e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\);
- \(\rho_b(0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\).

But if \(a \in B \setminus I\), then

\[\lambda_a(0) = a \circ (a^- + 0) = a \circ 0 = a \notin I, \]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✔
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✔
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✔
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✔

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_\cdot\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

\begin{itemize}
 \item \(I\) is a normal subgroup of \((B, \circ)\); \(\checkmark\)
 \item \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); \(\checkmark\)
 \item \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); \(\checkmark\)
 \item \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). \(\checkmark\)
\end{itemize}

But if \(a \in B \setminus I\), then

\[\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,\]

i.e., \(I\) is not \(\lambda_a\)-invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b (0) = (0 + b)^{-} \circ b = b^{-} \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^{-} + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Remark

In the case of a semi-brace that is not a skew brace, there is a difference with respect to the ideal of a skew brace.

Let \((B, \circ)\) be a group that is not simple, reviewed as trivial semi-brace. If \(I\) is a non-trivial normal subgroup of \((B, \circ)\), then \(I\) is an ideal. In fact,

- \(I\) is a normal subgroup of \((B, \circ)\); ✓
- \(I \cap G = \{0\}\) is a normal subgroup of \((G, +)\); ✓
- \(\lambda_0 (e) = 0 \circ (0 + e) = e \in I\), for every \(e \in I \cap E = I\); ✓
- \(\rho_b (0) = (0 + b)^- \circ b = b^- \circ b = 0 \in I\), for every \(b \in B\). ✓

But if \(a \in B \setminus I\), then

\[
\lambda_a (0) = a \circ (a^- + 0) = a \circ 0 = a \notin I,
\]

i.e., \(I\) is not \(\lambda_a\) - invariant, nevertheless \(I\) is an ideal of \(B\).
Ideals of a semi-brace - II

Proposition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace and I is an ideal of B, then the relation \sim_I on B given by

$$\forall x, y \in B, \quad x \sim_I y \iff y^\circ x \in I$$

is a congruence of B.

Further, if B is a semi-brace and I is an ideal, then the quotient structure B/I of B with respect to the relation \sim_I is a right group with respect to the sum.

Therefore the quotient structure B/I is a semi-brace.
Ideals of a semi-brace - II

Proposition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace and I is an ideal of B, then the relation \sim_I on B given by

$$\forall x, y \in B, \quad x \sim_I y \iff y^- \circ x \in I$$

is a congruence of B.

Further, if B is a semi-brace and I is an ideal, then the quotient structure B/I of B with respect to the relation \sim_I is a right group with respect to the sum.

Therefore the quotient structure B/I is a semi-brace.
Ideals of a semi-brace - II

Proposition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace and I is an ideal of B, then the relation \sim_I on B given by

$$\forall x, y \in B, \quad x \sim_I y \iff y^- \circ x \in I$$

is a congruence of B.

Further, if B is a semi-brace and I is an ideal, then the quotient structure B/I of B with respect to the relation \sim_I is a right group with respect to the sum.

Therefore the quotient structure B/I is a semi-brace.
Ideals of a semi-brace - II

Proposition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace and I is an ideal of B, then the relation \sim_I on B given by

$$\forall x, y \in B, \quad x \sim_I y \iff y^- \circ x \in I$$

is a congruence of B.

Further, if B is a semi-brace and I is an ideal, then the quotient structure B/I of B with respect to the relation \sim_I is a right group with respect to the sum.

Therefore the quotient structure B/I is a semi-brace.

If \(B \) is a semi-brace and \(I \) is an ideal of \(B \), then the relation \(\sim_I \) on \(B \) given by
\[
\forall x, y \in B, \quad x \sim_I y \iff y^- \circ x \in I
\]
is a congruence of \(B \).

Further, if \(B \) is a semi-brace and \(I \) is an ideal, then the quotient structure \(B/I \) of \(B \) with respect to the relation \(\sim_I \) is a right group with respect to the sum.

Therefore the quotient structure \(B/I \) is a semi-brace.
Ideals of a semi-brace - II

Proposition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace and I is an ideal of B, then the relation \sim_I on B given by

$$\forall x, y \in B, \quad x \sim_I y \iff y^- \circ x \in I$$

is a congruence of B.

Further, if B is a semi-brace and I is an ideal, then the quotient structure B/I of B with respect to the relation \sim_I is a right group with respect to the sum.

Therefore the quotient structure B/I is a semi-brace.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{ a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \ b + b \circ a = b \circ a + b \}$$

is said the socle of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$Soc(B) = \{ a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \ -a + b + a = b + 0 \}$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = Soc(B)$.
Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{ a \mid a \in B, \ \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b \}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{ a \mid a \in G, \ \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0 \}$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b\}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0\}$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \ \forall \ b \in B \quad a \circ b = a + b, \ b + b \circ a = b \circ a + b\}$$

is said the *socle* of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \ \forall \ b \in B \quad a \circ b = a + b, \ -a + b + a = b + 0\}$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{ a \mid a \in B, \ \forall b \in B \quad a \circ b = a + b, \ b + b \circ a = b \circ a + b \}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{ a \mid a \in G, \ \forall b \in B \quad a \circ b = a + b, \ -a + b + a = b + 0 \}$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b\}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0\}.$$

the **socle** of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{ a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b \}$$

is said the socle of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{ a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0 \}.$$

the socle of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{ a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b \}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$Soc(B) = \{ a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0 \}.$$

the **socle** of the semi-brace B.

If B is a skew brace, then $S(B) = Soc(B)$.

P. Stefanelli (UniSalento)
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b\}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0\}.$$

the **socle** of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b\}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0\}.$$

the **socle** of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
The socle

Guarnieri and Vendramin introduced the socle for skew braces, as generalization of that classical for braces.

Definition

Let B be a skew brace. Then the ideal defined by

$$S(B) := \{a \mid a \in B, \ \forall b \in B \quad a \circ b = a + b, \quad b + b \circ a = b \circ a + b\}$$

is said the **socle** of B.

We may generalize this definition for semi-braces in the following way:

Definition (F. Catino, I. Colazzo, P.S., J. Algebra, 2017)

If B is a semi-brace, 0 is the identity of (B, \circ) and $G := B + 0$, then we call the set given by

$$\text{Soc}(B) = \{a \mid a \in G, \ \forall b \in B \quad a \circ b = a + b, \quad -a + b + a = b + 0\}.$$

the **socle** of the semi-brace B.

If B is a skew brace, then $S(B) = \text{Soc}(B)$.
Thanks for your attention!