Group identities for unitary units of group rings

Ernesto Spinelli

Università di Roma “La Sapienza”
Dipartimento di Matematica “G. Castelnuovo”
Joint work with Greg Lee and Sudarshan Sehgal

Spa, June 18-24, 2017
Groups, Rings and the Yang-Baxter equation
Let $\langle x_1, x_2, \ldots \rangle$ be the free group on a countable infinitude of generators.

Definition

A subset S of a group G satisfies a *group identity* (and write S is GI) if there exists a non-trivial reduced word $w(x_1, \ldots, x_n) \in \langle x_1, x_2, \ldots \rangle$ such that $w(g_1, \ldots, g_n) = 1$ for all $g_i \in S$.
Examples

Let us define

\[(x_1, x_2) := x_1^{-1} x_2^{-1} x_1 x_2\]

and recursively

\[(x_1, \ldots, x_{n+1}) := ((x_1, \ldots, x_n), x_{n+1}).\]
Examples

Let us define

$$(x_1, x_2) := x_1^{-1} x_2^{-1} x_1 x_2$$

and recursively

$$(x_1, \ldots, x_{n+1}) := ((x_1, \ldots, x_n), x_{n+1}).$$

A group G is *abelian* if it satisfies $(x_1, x_2) = 1$.
Examples

Let us define

\[(x_1, x_2) := x_1^{-1} x_2^{-1} x_1 x_2\]

and recursively

\[(x_1, \ldots, x_{n+1}) := ((x_1, \ldots, x_n), x_{n+1}).\]

- A group \(G\) is **abelian** if it satisfies \((x_1, x_2) = 1\)
- \(G\) is **nilpotent** if it satisfies \((x_1, x_2, \ldots, x_n) = 1\) for some \(n \geq 2\)
Examples

Let us define

\[(x_1, x_2) := x_1^{-1} x_2^{-1} x_1 x_2\]

and recursively

\[(x_1, \ldots, x_{n+1}) := ((x_1, \ldots, x_n), x_{n+1}).\]

- A group \(G\) is **abelian** if it satisfies \((x_1, x_2) = 1\)
- \(G\) is **nilpotent** if it satisfies \((x_1, x_2, \ldots, x_n) = 1\) for some \(n \geq 2\)
- \(G\) is **bounded Engel** if it satisfies \((x_1, x_2, \ldots, x_2) = 1\) for some \(n \geq 1\)
Hartley’s Conjecture

Let F be a field and G a torsion group.

$\mathcal{U}(FG)$ is GI \implies FG is PI
Hartley’s Conjecture

Let F be a field and G a torsion group.

$$\mathcal{U}(FG) \text{ is GI} \implies FG \text{ is PI}$$

Let $F\langle X \rangle$ be the free associative algebra generated by a countable set $X := \{x_1, x_2, \ldots \}$ over F.

Definition

A subset S of an F-algebra A is said to satisfy a *polynomial identity* (and write S is PI) if there exists $0 \neq f(x_1, \ldots, x_n) \in F\langle X \rangle$ such that $f(a_1, \ldots, a_n) = 0$ for all $a_i \in S$.
Solution of Hartley’s Conjecture

- Giambruno-Jespers-Valenti (1994): $\text{char } F = 0$ or F infinite, $\text{char } F = p \geq 2$ and $P = 1$
Solution of the Conjecture

Solution of Hartley’s Conjecture

- Giambruno-Jespers-Valenti (1994): $\text{char } F = 0$ or F infinite, $\text{char } F = p \geq 2$ and $P = 1$

- Giambruno-Sehgal-Valenti (1997): F infinite
Solution of Hartley’s Conjecture

- **Giambruno-Jespers-Valenti (1994):** \(\text{char } F = 0 \) or \(F \) infinite, \(\text{char } F = p \geq 2 \) and \(P = 1 \)
- **Giambruno-Sehgal-Valenti (1997):** \(F \) infinite
- **Liu (1999):** \(F \) finite
Solution of Hartley’s Conjecture

- Giambruno-Jespers-Valenti (1994): $\text{char } F = 0$ or F infinite, $\text{char } F = p \geq 2$ and $P = 1$
- Giambruno-Sehgal-Valenti (1997): F infinite
- Liu (1999): F finite

Characterization of when $\mathcal{U}(FG)$ is GI

- Passman (1997): F infinite and G torsion
Solution of Hartley’s Conjecture

- Giambruno-Jespers-Valenti (1994): $\text{char } F = 0$ or F infinite, $\text{char } F = p \geq 2$ and $P = 1$
- Giambruno-Sehgal-Valenti (1997): F infinite
- Liu (1999): F finite

Characterization of when $U(FG)$ is GI

- Passman (1997): F infinite and G torsion
- Liu-Passman (1999): F finite and G torsion
Solution of Hartley’s Conjecture

- Giambruno-Jespers-Valenti (1994): \(\text{char } F = 0 \) or \(F \) infinite, \(\text{char } F = p \geq 2 \) and \(P = 1 \)
- Giambruno-Sehgal-Valenti (1997): \(F \) infinite
- Liu (1999): \(F \) finite

Characterization of when \(U(FG) \) is GI

- Passman (1997): \(F \) infinite and \(G \) torsion
- Liu-Passman (1999): \(F \) finite and \(G \) torsion
- Giambruno-Sehgal-Valenti (2000): \(G \) non-torsion
Classical and F-linear involutions

Let G be a group endowed with an involution \star. Let us consider the F-linear extension of \star to FG setting

$$\left(\sum_{g \in G} a_g g\right)^\star := \sum_{g \in G} a_g g^\star.$$

This extension, which we denote again by \star, is an involution of FG which fixes the ground field F elementwise.
Classical and F-linear involutions

Let G be a group endowed with an involution \star. Let us consider the F-linear extension of \star to FG setting

$$
\left(\sum_{g \in G} a_g g \right)^\star := \sum_{g \in G} a_g g^\star.
$$

This extension, which we denote again by \star, is an involution of FG which fixes the ground field F elementwise. As is well-known, any group G has a natural involution which is given by the map $\star : g \mapsto g^{-1}$.

Definition

Let FG be the group algebra of a group G over a field F. If G is endowed with an involution \star, its linear extension to the group algebra FG is called a F-linear involution of FG. In particular, if $\star = \ast$ the induced involution is called the classical involution.
Let us consider

$$\mathcal{U}^+(FG) := \{ x \mid x \in \mathcal{U}(FG) \quad x = x^* \},$$

$$Un(FG) := \{ x \mid x \in FG \quad xx^* = x^*x = 1 \}.$$

$Un(FG)$ is a subgroup of $\mathcal{U}(FG)$, whereas $\mathcal{U}^+(FG)$ is a subset of $\mathcal{U}(FG)$.

Definition

Let FG be the group algebra of a group G over a field F endowed with an F-linear involution. The elements of $\mathcal{U}^+(FG)$ are called the *symmetric units* of FG (with respect to $*$) and those of $Un(FG)$ are called the *unitary units* of FG.
Symmetric and unitary units

Let us consider

\[U^+(FG) := \{ x \mid x \in U(FG) \quad x = x^* \}, \]

\[Un(FG) := \{ x \mid x \in FG \quad xx^* = x^*x = 1 \}. \]

\(Un(FG) \) is a subgroup of \(U(FG) \), whereas \(U^+(FG) \) is a subset of \(U(FG) \).

Definition

Let \(FG \) be the group algebra of a group \(G \) over a field \(F \) endowed with an \(F \)-linear involution. The elements of \(U^+(FG) \) are called the **symmetric units** of \(FG \) (with respect to \(* \)) and those of \(Un(FG) \) are called the **unitary units** of \(FG \).
We want to determine if we can decide the structure of G by imposing constraints upon subsets of the unit group $\mathcal{U}(FG)$.
Constraints on subsets of $\mathcal{U}(FG)$

We want to determine if we can decide the structure of G by imposing constraints upon subsets of the unit group $\mathcal{U}(FG)$.

Main Question

$Un(FG) / \mathcal{U}^+(FG)$ satisfies \mathcal{P} \implies $\mathcal{U}(FG)$ satisfies \mathcal{P}
We want to determine if we can decide the structure of G by imposing constraints upon subsets of the unit group $\mathcal{U}(FG)$.

Main Question

$Un(FG) / \mathcal{U}^+(FG)$ satisfies $\mathcal{P} \implies \mathcal{U}(FG)$ satisfies \mathcal{P} or G is
Introduction and Motivations
Group Identities for $U^+(FG)$

When $U^+(FG)$ is GI
Group Identities for $Un(FG)$

Special Group Identities

When $U^+(FG)$ is GI

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let FG be the group algebra of a torsion group G over an infinite field F of characteristic $p \neq 2$ endowed with a F-linear involution. Then $U^+(FG)$ is GI if, and only if,

1. FG is semiprime and G is either abelian or an SLC-group,
2. FG is not semiprime, P is a normal subgroup of G, G has a p-abelian normal subgroup of finite index and either G' is a p-group of bounded exponent or G/P is an SLC-group and G contains a normal \star-invariant p-subgroup B of bounded exponent such that P/B is central in G/P and the induced involution acts as the identity on P/B.

Giambruno-Sehgal-Valenti (1998) answered the problem for the classical involution
When $\mathcal{U}^+(FG)$ is GI

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let FG be the group algebra of a torsion group G over an infinite field F of characteristic $p \neq 2$ endowed with a F-linear involution. Then $\mathcal{U}^+(FG)$ is GI if, and only if,

(a) FG is semiprime and G is either abelian or an SLC-group, or

(b) FG is not semiprime, P is a normal subgroup of G, G has a p-abelian normal subgroup of finite index and either
 - G' is a p-group of bounded exponent or
 - G/P is an SLC-group and G contains a normal \star-invariant p-subgroup B of bounded exponent such that P/B is central in G/P and the induced involution acts as the identity on P/B.

Giambruno-Sehgal-Valenti (1998) answered the problem for the classical involution
When \(\mathcal{U}^+(FG) \) is GI

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let \(FG \) be the group algebra of a torsion group \(G \) over an infinite field \(F \) of characteristic \(p \neq 2 \) endowed with a \(F \)-linear involution. Then \(\mathcal{U}^+(FG) \) is GI if, and only if,

(a) \(FG \) is semiprime and \(G \) is either abelian or an SLC-group, or

(b) \(FG \) is not semiprime, \(P \) is a normal subgroup of \(G \), \(G \) has a \(p \)-abelian normal subgroup of finite index and either
 - \(G' \) is a \(p \)-group of bounded exponent or
 - \(G/P \) is an SLC-group and \(G \) contains a normal \(\star \)-invariant \(p \)-subgroup \(B \) of bounded exponent such that \(P/B \) is central in \(G/P \) and the induced involution acts as the identity on \(P/B \).

Giambruno-Sehgal-Valenti (1998) answered the problem for the classical involution
A group G is called an **LC-group** (that is, it has the "lack of commutativity" property) if it is not abelian, but, whenever $g, h \in G$ and $gh = hg$, then at least one of $\{g, h, gh\}$ is central. A group G is an LC-group with a unique nonidentity commutator (which must, obviously, have order 2) if, and only if, $G/\zeta(G) \cong C_2 \times C_2$.

Definition

A group G endowed with an involution \ast is said to be a **special LC-group**, or **SLC-group**, if it is an LC-group, it has a unique nonidentity commutator z and, for all $g \in G$, we have $g^\ast = g$ if $g \in \zeta(G)$ and, otherwise, $g^\ast = zg$.

The non-torsion case

For infinite fields the question was studied by

- Sehgal-Valenti (2006): * is the classical involution
The non-torsion case

For infinite fields the question was studied by

- Sehgal-Valenti (2006): \ast is the classical involution
- Giambruno-Polcino Milies-Sehgal (2017): in the more general framework of \ast-group identities
Introduction and Motivations
Group Identities for $U^+(FG)$
Group Identities for $Un(FG)$

When $U^+(FG)$ is GI
Special Group Identities

Special group identities
Introduction and Motivations
Group Identities for $U^+(FG)$
Group Identities for $Un(FG)$

Special group identities

Classical involution

- **Nilpotency**: Lee (2003) and Lee-Polcino Milies-Sehgal (2007)
Special group identities

Classical involution

- **Nilpotency**: Lee (2003) and Lee-Polcino Milies-Sehgal (2007)
- **Bounded Engel**: Lee-S. (2010)
Introduction and Motivations

Group Identities for $U^+(FG)$

Group Identities for $Un(FG)$

When $U^+(FG)$ is GI

Special Group Identities

Special group identities

Classical involution

- **Nilpotency**: Lee (2003) and Lee-Polcino Milies-Sehgal (2007)
- **Bounded Engel**: Lee-S. (2010)
- **Solvability**: Lee-S. (2009)
Introduction and Motivations
Group Identities for $U^+(FG)$

Special Group Identities

Classical involution
- **Nilpotency**: Lee (2003) and Lee-Polcino Milies-Sehgal (2007)
- **Bounded Engel**: Lee-S. (2010)
- **Solvability**: Lee-S. (2009)

Theorem [Lee-Sehgal-S., 2010]
Let F be an infinite field of characteristic $p > 2$ and G a torsion group having an involution \star, and let FG have the induced involution. Suppose that $\mathcal{U}(FG)$ is not nilpotent. Then $\mathcal{U}^+(FG)$ is nilpotent if, and only if, G is nilpotent and G has a finite normal \star-invariant p-subgroup N such that G/N is an SLC-group.
A result for finite groups

Theorem [Goncalves-Passman, 2001]

Let FG be the group algebra of a finite group G over a non-absolute field F of characteristic $p \neq 2$ endowed with the classical involution. The unitary unit subgroup $Un(FG)$ contains no non-abelian free subgroup if, and only if,

(i) G has a normal Sylow p-subgroup P (by convention $P = 1$ if $p = 0$).

(ii) Either $\overline{G} := G/P$ is abelian or it has an abelian subgroup \overline{A} of index 2. Furthermore, if the latter occurs, then either $\overline{G} = \overline{A} \rtimes \langle y \rangle$ is dihedral, or \overline{A} is an elementary abelian 2-group.
Theorem [Giambruno-Polcino Milies, 2003]

Let GF be the group algebra of a group G over a field F of characteristic 0 endowed with the classical involution. Suppose that $Un(FG)$ satisfies a group identity which is 2-free. Then the set T of torsion elements of G is a subgroup and one of the following conditions holds:

(i) T is abelian.

(ii) $A := \{ g \mid g \in T \ o(g) \neq 2 \}$ is a normal abelian subgroup of G and $(T \setminus A)^2 = 1$.

(iii) T contains an elementary abelian 2-subgroup B such that $[T : B] = 2$.

Conversely, if $G = T$ is a torsion group and G satisfies one of the above conditions, then $Un(FG)$ is GI.
Some partial results for F-linear involutions

- Broche-Dooms-Ruiz (2009): F non-absolute field of characteristic different from 2 and
 - FG is regular
 - G is locally finite and the prime radical of FG is nilpotent
Nilpotency of $\mathcal{U}(FG)$

Theorem [Khripta, 1972]

Let FG be the group algebra of a group G over a field F of characteristic $p > 0$ such that FG is modular. Then $\mathcal{U}(FG)$ is nilpotent if, and only if, G is nilpotent and p-abelian.
Nilpotency of $\mathcal{U}(FG)$

Theorem [Khripta, 1972]

Let FG be the group algebra of a group G over a field F of characteristic $p > 0$ such that FG is modular. Then $\mathcal{U}(FG)$ is nilpotent if, and only if, G is nilpotent and p-abelian.
The non-modular case

Theorem [Fisher-Parmenter-Sehgal, 1976 & Khripta, 1971]

Let FG be the group algebra of a group G over a field F of characteristic $p \geq 0$ such that, if $p > 0$, FG is non-modular. Then the following are equivalent:

(i) $U(FG)$ is bounded Engel and solvable;

(ii) G is bounded Engel and solvable, the torsion elements of G form an abelian (normal) subgroup T and either:

(a) T is central in G or

(b) $|F| = p$ is a Mersenne prime, $T^{p^2 - 1} = 1$ and for every $h \in T$ and $g \in G$ we have $h^g = h$ or h^p;

(iii) $U(FG)$ is nilpotent.
The modular case for unitary units

Theorem [Lee-Sehgal-S., 2017]

Let FG be the group algebra of a group G over an infinite field F of characteristic $p > 2$ endowed with the classical involution, such that FG is modular. Then the following are equivalent:

(i) $Un(FG)$ is bounded Engel and solvable;

(ii) $U(FG)$ is nilpotent;

(iii) G is nilpotent and p-abelian.
Assume that G has no 2-elements.
Assume that G has no 2-elements.

- G is locally finite.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.
The non-modular case for torsion groups

Assume that G has no 2-elements.
- G is locally finite. Thus we may as well assume that G is finite.
- Assume also that $p \neq 0$ because of [GPM].
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.
- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$.

The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent.
Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent and this implies $n_i = 1$.

The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.
- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent and this implies $n_i = 1$.
- $e_i^* = e_i$.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent and this implies $n_i = 1$.

- $e_i^* = e_i$. Then there is an induced involution on $M_{n_i}(K_i)$.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.

- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent and this implies $n_i = 1$.

- $e_i^* = e_i$. Then there is an induced involution on $M_{n_i}(K_i)$. Now $Un(M_{n_i}(K_i))$ is nilpotent.
The non-modular case for torsion groups

Assume that G has no 2-elements.

- G is locally finite. Thus we may as well assume that G is finite.
- Assume also that $p \neq 0$ because of [GPM]. So we may assume that F is finite too.

Let e_1, \ldots, e_k be the primitive central idempotents of FG. Then each $FGe_i = M_{n_i}(K_i)$ for some finite field K_i.

- $e_i^* \neq e_i$. In this case $GL_{n_i}(K_i)$ is nilpotent and this implies $n_i = 1$.
- $e_i^* = e_i$. Then there is an induced involution on $M_{n_i}(K_i)$. Now $Un(M_{n_i}(K_i))$ is nilpotent and, as each ge_i is a unitary unit of odd order for all $g \in G$, again $n_i = 1$.
The non-modular case for torsion groups

Theorem [Lee-Sehgal-S., 2017]

Let FG be the group algebra of a torsion group G over a field F of characteristic $p \neq 2$ endowed with the classical involution, such that FG is non-modular and G has no elements of order 2. Then $Un(FG)$ is bounded Engel and solvable if, and only if, G is abelian.
The non-modular case for torsion groups

Theorem [Lee-Sehgal-S., 2017]

Let FG be the group algebra of a torsion group G over a field F of characteristic $p \neq 2$ endowed with the classical involution, such that FG is non-modular and G has no elements of order 2. Then $Un(FG)$ is bounded Engel and solvable if, and only if, G is abelian.
A crucial example

Example [Lee-Sehgal-S., 2014]

Let F be the field of order 5 and G the dihedral group of order 8. Then $Un(FG)$ is nilpotent, but $U(FG)$ is not bounded Engel and solvable.
The non-modular case

Theorem [Lee-Sehgal-S., 2017]

Let FG be the group algebra of a group G over an algebraically closed field F of characteristic $p \neq 2$ endowed with the classical involution, such that FG is non-modular. Then the following are equivalent:

(i) $Un(FG)$ is bounded Engel and solvable;
(ii) $U(FG)$ is nilpotent;
(iii) G is nilpotent and the torsion elements of G are central.

