On the Zassenhaus conjecture for direct products

Mariano Serrano

with Andreas Bächle and Wolfgang Kimmerle

Department of Mathematics
University of Murcia

Groups, Rings and the Yang-Baxter equation
Spa, June 22, 2017
1 The Zassenhaus conjecture
 • An introduction
 • Direct products and Camina groups
 • The Extended HeLP Method
Integral group rings

G a finite group. $\mathbb{Z}G$ the integral group ring of G.

$$U(\mathbb{Z}G) = \{\text{Units of } \mathbb{Z}G\}$$

The elements $\pm g$ with $g \in G$ are called trivial units.

The Augmentation map

\[\varepsilon : \mathbb{Z}[G] \to \mathbb{Z} \]
\[\sum_{g \in G} u_g g \to \sum_{g \in G} u_g \]

Units with augmentation one
- \(V(\mathbb{Z}[G]) = \{ u \in U(\mathbb{Z}[G]) : \varepsilon(u) = 1 \} \).
- \(U(\mathbb{Z}[G]) = \pm V(\mathbb{Z}[G]) \).

General problem
How are the torsion elements of \(V(\mathbb{Z}[G]) \)?
The Zassenhaus Conjecture (1974)

Every torsion unit of $V(\mathbb{Z}G)$ is conjugate in $U(\mathbb{Q}G)$ to an element of G.

The Zassenhaus Conjecture has been proved for:

- Nilpotent groups. (Weiss 1991)
- Groups having a normal Sylow subgroup with abelian complement. (Hertweck 2006)
- Cyclic-by-abelian groups. (Caicedo, Margolis and del Río 2013)
- $\text{PSL}(2, p)$ for p a Fermat or Mersenne prime. (Margolis, del Río and S. 2016)
- Groups till order 143. (Bächle, Herman, Konovalov, Margolis and Singh 2016)
x^G the conjugacy class of x in G.

Partial augmentations in $\mathbb{Z}G$

- $u = \sum_{g \in G} u g g \in \mathbb{Z}G$ and $x \in G$.
- $\varepsilon_x(u) = \sum_{g \in x^G} u g$ the **partial augmentation** of u at x.
Mariano Serrano

On the Zassenhaus conjecture for direct products

Marciniak, Ritter, Sehgal and Weiss.

A finite group. The following conditions are equivalent:

1. The Zassenhaus Conjecture holds for G.
2. For every torsion element $u \in V(\mathbb{Z}G)$, every $d \mid |u|$ and every $x \in G$ we have $\varepsilon_x(u^d) \geq 0$.

A result to deal with the Zassenhaus conjecture
The Zassenhaus conjecture
An introduction
Direct products and Camina groups
The Extended HeLP Method

1 The Zassenhaus conjecture
 • An introduction
 • Direct products and Camina groups
 • The Extended HeLP Method
General problem for direct products

Open problem

G and H finite groups satisfying the Zassenhaus conjecture. Does the Zassenhaus conjecture hold for $G \times H$?
Höfert 2004

G finite group for which the Zassenhaus conjecture holds. Then it also holds for $G \times C_2$.

Hertweck 2008

G finite group for which the Zassenhaus conjecture holds. H nilpotent group with $\gcd(|G|, |H|) = 1$. Then the Zassenhaus conjecture holds for $G \times H$.

Goal

G finite group, A abelian finite group. Study the Zassenhaus conjecture for $G \times A$.
Camina groups

G' the derived subgroup of the finite group G.

Definitions (1978)

- G is called a **Camina group** if $gG' = g^G$ for every $g \in G \setminus G'$.
- For a positive integer n, a Camina group G is called an **n-Camina group** if G' is the union of n G-conjugacy classes.

Examples

- 1-Camina groups are precisely the abelian finite groups.
- S_3, A_4 and D_8 are 2-Camina groups.
- $C_2^4 \rtimes C_3$ is a 6-Camina group.
The general classification by Dark and Scoppola 1996

A finite non-abelian group is a Camina group if and only if it is a Camina p-group or a Frobenius group whose complement is either cyclic or Q_8.

Remark

The Zassenhaus conjecture holds for Camina groups.
Theorem (Bächle, Kimmerle and S. 2017)

G Camina group. A abelian finite group. Then the Zassenhaus conjecture holds for $G \times A$.
Another approach

\(\zeta_m \) a complex primitive \(m \)-th root of unity.

Hertweck 2008

\(G \) finite group. A abelian finite group with exponent \(m \).
Suppose that any torsion unit in \(V(\mathbb{Z}[\zeta_m]G) \) is conjugate in \(U(\mathbb{Q}(\zeta_m)G) \)
to an element of \(G \).
Then the Zassenhaus conjecture holds for \(G \times A \).
The Extended HeLP Method

G finite group.
\mathcal{O} the ring of algebraic integers in a number field K.

<table>
<thead>
<tr>
<th>HeLP Method</th>
<th>Extended HeLP Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \in V(\mathbb{Z}G)$ of order n</td>
<td>$u \in V(\mathcal{O}G)$ of order n</td>
</tr>
<tr>
<td>$\varepsilon_x(u) \in \mathbb{Z}$ for any $x \in G$</td>
<td>$\varepsilon_x(u) \in \mathbb{Z}[\zeta_n] \cap \mathcal{O}$ for any $x \in G$</td>
</tr>
</tbody>
</table>

Idea of the method

- Produce restrictions over $\varepsilon_x(u^d)$ for any $x \in G$ and any $d \mid n$.
- (MRSW’87) u is conjugate in $U(KG)$ to an element of G iff $\forall d \mid n$, all but one of the partial augmentations of u^d vanish.
The result

Work in progress (Bächle, Kimmerle, S. 2017)

G a finite group with $|G| \leq 95$. A abelian finite group.
G doesn’t map onto S_4, $G \not\cong A_5$ and $G \not\cong (S_3 \times S_3) \rtimes C_2$.
Then the Zassenhaus conjecture holds for $G \times A$.
Theorem (Bächle, Kimmerle and S. 2017)

Let \(G = (P_1 \rtimes A_1) \times \cdots \times (P_k \rtimes A_k) \) be a finite group where \(P_i \) are \(p_i \)-groups, \(A_i \) are abelian groups and \(P_1 \times \cdots \times P_k \) is a Hall subgroup of \(G \). Then the Zassenhaus conjecture holds for \(G \).

Corollary

\(H \) a finite group with a normal nilpotent Hall subgroup \(N \) such that \(H/N \) is abelian. Then \(H \) can be embedded into a group \(G \) for which the Zassenhaus conjecture holds.
Thanks for your attention.

Officially not celebrating Eric Jespers’ 62nd birthday