Algebras of Linear Growth and the Dynamical Mordell–Lang Conjecture

Dmitri Piontkovski
dpiontkovski@hse.ru

Higher School of Economics, Moscow, Russia

Spa, 2017
Graded algebras

We call an associative algebra A graded if

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \ldots,$$

where $A_0 = k$ is a basic field, $\dim_k A_i < \infty$. All our algebras are graded.

Hilbert function: $h_A(n) = \dim A_n$

Hilbert series:

$$H_A(z) = \sum_{n \geq 0} z^n \dim A_n = \sum_{n \geq 0} z^n h_A(n).$$
Graded algebras

We call an associative algebra A graded if

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \ldots,$$

where $A_0 = k$ is a basic field, $\dim_k A_i < \infty$. All our algebras are graded.

Hilbert function: $h_A(n) = \dim A_n$

Hilbert series:

$$H_A(z) = \sum_{n \geq 0} z^n \dim A_n = \sum_{n \geq 0} z^n h_A(n).$$
Graded algebras

We call an associative algebra A graded if

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \ldots,$$

where $A_0 = k$ is a basic field, $\dim_k A_i < \infty$. All our algebras are graded.

Hilbert function: $h_A(n) = \dim A_n$

Hilbert series:

$$H_A(z) = \sum_{n \geq 0} z^n \dim A_n = \sum_{n \geq 0} z^n h_A(n).$$
Graded algebras

We call an associative algebra A graded if

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \ldots,$$

where $A_0 = k$ is a basic field, $\dim_k A_i < \infty$. All our algebras are graded.

Hilbert function: $h_A(n) = \dim A_n$

Hilbert series:

$$H_A(z) = \sum_{n \geq 0} z^n \dim A_n = \sum_{n \geq 0} z^n h_A(n).$$
Rationality

An algebra A is called **finitely presented** if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)

If the relations of a finitely presented algebra A are monomials in generators then $H_A(z)$ is a rational function.

Conjecture (Govorov)

For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.
Rationality

An algebra A is called finitely presented if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)

If the relations of a finitely presented algebra A are monomials in generators then $H_A(z)$ is a rational function.

Conjecture (Govorov)

For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.
Rationality

An algebra A is called \textit{finitely presented} if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)

\textit{If the relations of a finitely presented algebra A are monomials in generators then $H_A(z)$ is a rational function.}

Conjecture (Govorov)

\textit{For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.}

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.
Rationality

An algebra A is called **finitely presented** if it is defined by a finite number of generators and relations.

Theorem (Govorov, 1972)

If the relations of a finitely presented algebra A are monomials in generators then $H_A(z)$ is a rational function.

Conjecture (Govorov)

For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.
Rationality

An algebra A is called \textit{finitely presented} if it is defined by a finite number of generators and relations.

\textbf{Theorem (Govorov, 1972)}

\textit{If the relations of a finitely presented algebra A are monomials in generators then $H_A(z)$ is a rational function.}

\textbf{Conjecture (Govorov)}

\textit{For each finitely presented algebra A the Hilbert series $H_A(z)$ is a rational function.}

Open questions: Govorov conjecture for Noetherian algebras and for Koszul algebras.
Rationality in the linear growth case

An algebra has **linear growth**, if $\text{GK-dim } A \leq 1$, that is, for some $c > 0$ we have $h_A(n) = \dim A_n < c$.

Example

Let $A = \langle x, y| x^2, yxy, xy^{2^t}x \text{ for all } t \geq 0 \rangle$. Then $A_n = k\{y^n, xy^{n-1}, y^{n-1}x, xy^{n-2}x\}$ for $n \neq 2^t + 2$ or $A_n = k\{y^n, xy^{n-1}, y^{n-1}x\}$ otherwise.

We have $H_A(z) = 1 + 2z + 4z^2/(1 - z) - z^2 \sum_{t \geq 0} z^{2^t}$.

Problem (Govorov conjecture for algebras of linear growth, GALG)

Suppose that an algebra A of linear growth is finitely presented. Is $H_A(z)$ a rational function?

For such algebras, $H_A(z)$ is rational iff $h_A(n)$ is eventually periodic, that is, $\exists n_0, T > 0$ such that $h_A(n) = h_A(n + T)$ for all $n > n_0$.
Rationality in the linear growth case

An algebra has **linear growth**, if $\GKdim A \leq 1$, that is, for some $c > 0$ we have $h_A(n) = \dim A_n < c$.

Example

Let $A = \langle x, y | x^2, yxy, xy^{2^t}x \text{ for all } t \geq 0 \rangle$. Then

- $A_n = k\{y^n, xy^{n-1}, y^{n-1}x, xy^{n-2}x\}$ for $n \neq 2^t + 2$ or
- $A_n = k\{y^n, xy^{n-1}, y^{n-1}x\}$ otherwise.

We have $H_A(z) = 1 + 2z + 4z^2/(1 - z) - z^2 \sum_{t \geq 0} z^{2^t}$.

Problem (Govorov conjecture for algebras of linear growth, GALG)

Suppose that an algebra A of linear growth is finitely presented. Is $H_A(z)$ a rational function?

For such algebras, $H_A(z)$ is rational iff $h_A(n)$ is eventually periodic, that is, $\exists n_0, T > 0$ such that $h_A(n) = h_A(n + T)$ for all $n > n_0$.
Rationality in the linear growth case

An algebra has linear growth, if $\text{GK-dim } A \leq 1$, that is, for some $c > 0$ we have $h_A(n) = \dim A_n < c$.

Example

Let $A = \langle x, y \mid x^2, yxy, xy^{2^t}x \text{ for all } t \geq 0 \rangle$. Then

$A_n = k\{y^n, xy^{n-1}, y^{n-1}x, xy^{n-2}x\}$ for $n \neq 2^t + 2$ or

$A_n = k\{y^n, xy^{n-1}, y^{n-1}x\}$ otherwise.

We have $H_A(z) = 1 + 2z + 4z^2/(1 - z) - z^2 \sum_{t \geq 0} z^{2^t}$.

Problem (Govorov conjecture for algebras of linear growth, GALG)

Suppose that an algebra A of linear growth is finitely presented. Is $H_A(z)$ a rational function?

For such algebras, $H_A(z)$ is rational iff $h_A(n)$ is eventually periodic, that is, $\exists n_0, T > 0$ such that $h_A(n) = h_A(n + T)$ for all $n > n_0$.
Automaton algebras

Let X be a finite generating set of an algebra A. Consider a multiplicative ordering `$<$' of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.
Let X be a finite generating set of an algebra A. Consider a multiplicative ordering ‘$<$’ of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.
Let X be a finite generating set of an algebra A. Consider a multiplicative ordering ‘$<$’ of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.
Automaton algebras

Let X be a finite generating set of an algebra A. Consider a multiplicative ordering ‘$<$’ of the set of all words in X. A word on X is called normal in A if it is not a linear combination of less words. The set N of all normal words is a linear basis of A.

Definition (Ufnarovski)

An algebra A is called automaton if N is a regular language.

Recall that a language is regular iff it is recognized by a finite automaton.
Automaton algebras

Property (generalized Govorov theorem): If A is graded automaton (that is, it is graded and automaton with homogeneous X and a degree-compatible ordering ‘$<$’), then $H_A(z)$ is a rational function.

Conjecture (Ufnarovski, 1990)
A finitely presented algebra of linear growth is automaton.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)
A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.
Automaton algebras

Property (generalized Govorov theorem): If A is graded automaton (that is, it is graded and automaton with homogeneous X and a degree-compatible ordering ‘$<$’), then $H_A(z)$ is a rational function.

Conjecture (Ufnarovski, 1990)

A finitely presented algebra of linear growth is automaton.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)

A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.
Automaton algebras

Property (generalized Govorov theorem): If A is graded automaton (that is, it is graded and automaton with homogeneous X and a degree-compatible ordering `$<`'), then $H_A(z)$ is a rational function.

Conjecture (Ufnarovski, 1990)

A finitely presented algebra of linear growth is automaton.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)

A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.
Automaton algebras

Property (generalized Govorov theorem): *If A is graded automaton (that is, it is graded and automaton with homogeneous X and a degree-compatible ordering ‘$<$’), then $H_A(z)$ is a rational function.*

Conjecture (Ufnarovski, 1990)

A finitely presented algebra of linear growth is automaton.

Conjecture (Ufnarovski conjecture for graded algebras, UGA)

A graded finitely presented algebra of linear growth is graded automaton.

UGA implies GALG.
The finite characteristic case

Theorem

Suppose that the field k has a finite characteristic. Then both Govorov conjecture for algebra of linear growth and Ufnarovski conjecture for graded algebras hold if and only if k is an algebraic extension of its prime subfield.

‘If’ part: essentially, the case of finite field.

‘Only if’ part (counterexamples to GALG): later.
The finite characteristic case

Theorem

Suppose that the field k has a finite characteristic. Then both Govorov conjecture for algebra of linear growth and Ufnarovski conjecture for graded algebras hold if and only if k is an algebraic extension of its prime subfield.

‘If’ part: essentially, the case of finite field.
‘Only if’ part (counterexamples to GALG): later.
The finite characteristic case

Theorem

Suppose that the field k has a finite characteristic. Then bothGovorov conjecture for algebra of linear growth andUfnarovski conjecture for graded algebras hold if andonly if k is an algebraic extension of its prime subfield.

‘If’ part: essentially, the case of finite field.
’Only if’ part (counterexamples to GALG): later.
The case of infinite field

What about the case char $k = 0$?

Example (Fermat algebras)

For $\alpha, \beta \in k^\times$, let $A = A_{\alpha, \beta}$ be generated by a, b, c, x, y, z subject to 26 relations $xc - \alpha cx, yb - \beta cy$ and others. Then $h_A(n + 3)$ is 10 or 11 according to whether the Fermat equality $\alpha^n + \beta^n = 1$ holds. So, it has no nonzero solution in k^\times for each $n \geq 3$ if and only if $h_A(i) = 10$ for all $i \geq 6$ and each $A = A_{\alpha, \beta}$.

Theorem

Let $g \geq 5$ be an integer. If the field k is infinite, then there are infinitely many (periodic) sequences h_A for g-generated quadratic k-algebras of linear growth. If in addition, k contains all primitive roots of unity, then both the length d of the initial non-periodic segment and the period T of h_A can be arbitrary large.
The case of infinite field
What about the case char $k = 0$?

Example (Fermat algebras)

For $\alpha, \beta \in k^\times$, let $A = A_{\alpha,\beta}$ be generated by a, b, c, x, y, z subject to 26 relations $xc - \alpha cx, yb - \beta cy$ and others. Then $h_{A}(n + 3)$ is 10 or 11 according to whether the Fermat equality $\alpha^n + \beta^n = 1$ holds. So, it has no nonzero solution in k^\times for each $n \geq 3$ if and only if $h_{A}(i) = 10$ for all $i \geq 6$ and each $A = A_{\alpha,\beta}$.

Theorem

Let $g \geq 5$ be an integer. If the field k is infinite, then there are infinitely many (periodic) sequences h_A for g-generated quadratic k-algebras of linear growth. If, in addition, k contains all primitive roots of unity, then both the length d of the initial non-periodic segment and the period T of h_A can be arbitrary large.
The case of infinite field

What about the case char \(k = 0 \)?

Example (Fermat algebras)

For \(\alpha, \beta \in k^\times \), let \(A = A_{\alpha,\beta} \) be generated by \(a, b, c, x, y, z \) subject to 26 relations \(xc - \alpha cx, yb - \beta cy \) and others. Then \(h_A(n+3) \) is 10 or 11 according to whether the Fermat equality \(\alpha^n + \beta^n = 1 \) holds. So, it has no nonzero solution in \(k^\times \) for each \(n \geq 3 \) if and only if \(h_A(i) = 10 \) for all \(i \geq 6 \) and each \(A = A_{\alpha,\beta} \).

Theorem

Let \(g \geq 5 \) be an integer. If the field \(k \) is infinite, then there are infinitely many (periodic) sequences \(h_A \) for \(g \)-generated quadratic \(k \)-algebras of linear growth. If \(k \), in addition, contains all primitive roots of unity, then both the length \(d \) of the initial non-periodic segment and the period \(T \) of \(h_A \) can be arbitrary large.
Skolem–Mahler–Lech theorem

Theorem (Skolem–Mahler–Lech)

If char \(k = 0 \) and \(a_n = c_1a_{n-1} + \cdots + c_d a_{n-d} \) is a linear recurrence over \(k \), then the zero set \(\{n \geq 0 | a_n = 0\} \) is the finite union of several arithmetic progressions and a finite set.

We refer to a set of nonnegative integers which is the union of a finite set and a finite collection of arithmetic progressions as **SML**. All known proofs essentially use \(p \)-adic analysis.

Example (Lech, 1953)

If the field \(k \) has characteristic \(p > 0 \) and \(t \in k \) is transcendental over the prime subfield \(F_p \) then the sequence \(a_n = (t + 1)^n - t^n - 1 \) satisfies \(a_n = 0 \) iff \(n = p^m \) with \(m \geq 0 \).
Skolem–Mahler–Lech theorem

Theorem (Skolem–Mahler–Lech)

If \(\text{char } k = 0 \) and \(a_n = c_1a_{n-1} + \cdots + c_d a_{n-d} \) is a linear recurrence over \(k \), then the zero set \(\{ n \geq 0 | a_n = 0 \} \) is the finite union of several arithmetic progressions and a finite set.

We refer to a set of nonnegative integers which is the union of a finite set and a finite collection of arithmetic progressions as **SML**.

All known proofs essentially use \(p \)-adic analysis.

Example (Lech, 1953)

If the field \(k \) has characteristic \(p > 0 \) and \(t \in k \) is transcendental over the prime subfield \(F_p \) then the sequence \(a_n = (t + 1)^n - t^n - 1 \) satisfies \(a_n = 0 \) iff \(n = p^m \) with \(m \geq 0 \).
Skolem–Mahler–Lech theorem

Theorem (Skolem–Mahler–Lech)

If $\text{char } k = 0$ and $a_n = c_1 a_{n-1} + \cdots + c_d a_{n-d}$ is a linear recurrence over k, then the zero set $\{n \geq 0 | a_n = 0\}$ is the finite union of several arithmetic progressions and a finite set.

We refer to a set of nonnegative integers which is the union of a finite set and a finite collection of arithmetic progressions as **SML**.

All known proofs essentially use p-adic analysis.

Example (Lech, 1953)

If the field k has characteristic $p > 0$ and $t \in k$ is transcendental over the prime subfield F_p, then the sequence $a_n = (t + 1)^n - t^n - 1$ satisfies $a_n = 0$ iff $n = p^m$ with $m \geq 0$.
Skolem–Mahler–Lech theorem

Theorem (Skolem–Mahler–Lech)

If \(\text{char } k = 0 \) and \(a_n = c_1 a_{n-1} + \cdots + c_d a_{n-d} \) is a linear recurrence over \(k \), then the zero set \(\{n \geq 0 | a_n = 0\} \) is the finite union of several arithmetic progressions and a finite set.

We refer to a set of nonnegative integers which is the union of a finite set and a finite collection of arithmetic progressions as SML.

All known proofs essentially use \(p \)-adic analysis.

Example (Lech, 1953)

If the field \(k \) has characteristic \(p > 0 \) and \(t \in k \) is transcendental over the prime subfield \(F_p \) then the sequence \(a_n = (t + 1)^n - t^n - 1 \) satisfies \(a_n = 0 \) iff \(n = p^m \) with \(m \geq 0 \).
The dynamical Mordell–Lang conjecture: formulation

A challenging generalization:

Conjecture (The dynamical Mordell–Lang conjecture)

Let \mathcal{V} be a quasiprojective variety over k (of characteristic zero), let $\Phi : \mathcal{V} \to \mathcal{V}$ be any morphism, and let $\alpha \in \mathcal{V}$. Then for each subvariety $Y \subset \mathcal{V}$, the set $\{n \geq 0 | \Phi^n(\alpha) \in Y\}$ is SML.

See the book (which is unfortunately absent in our library...) : Jason P. Bell, Dragos Ghioca, Thomas J. Tucker, *The Dynamical Mordell-lang Conjecture*, AMS, 2016 (Mathematical Surveys and Monographs, vol. 210)
The dynamical Mordell–Lang conjecture: some results

Some important cases are known.

Theorem (Bell, 2006)

Let $\text{char } k = 0$. The conjecture is true provided that \mathcal{V} is an affine variety and Φ is a polynomial automorphism.

Note that this corollary implies the Skolem–Mahler–Lech theorem.

Theorem

For any field k, GALG implies the linear dynamical Mordell–Lang conjecture.

So, we have implications

$\text{UGA} \rightarrow \text{GALG} \rightarrow \text{Linear ML} \rightarrow \text{Skolem–Mahler–Lech}$.
The dynamical Mordell–Lang conjecture: some results

Some important cases are known.

Theorem (Bell, 2006)

Let $\text{char } k = 0$. The conjecture is true provided that \mathcal{V} is an affine variety and Φ is a polynomial automorphism.

Note that this corollary implies the Skolem–Mahler–Lech theorem.

Theorem

For any field k, GALG implies the linear dynamical Mordell–Lang conjecture.

So, we have implications $\text{UGA} \implies \text{GALG} \implies \text{Linear ML} \implies \text{Skolem–Mahler–Lech}$.
The dynamical Mordell–Lang conjecture: some results

Some important cases are known.

Theorem (Bell, 2006)

Let $\text{char } k = 0$. The conjecture is true provided that \mathcal{V} is an affine variety and Φ is a polynomial automorphism.

Note that this corollary implies the Skolem–Mahler–Lech theorem.

Theorem

For any field k, GALG implies the linear dynamical Mordell–Lang conjecture.

So, we have implications

$\text{UGA} \implies \text{GALG} \implies \text{Linear ML} \implies \text{Skolem–Mahler–Lech}$.
The dynamical Mordell–Lang conjecture: some results

Some important cases are known.

Theorem (Bell, 2006)

Let $\text{char } k = 0$. The conjecture is true provided that \mathcal{V} is an affine variety and Φ is a polynomial automorphism.

Note that this corollary implies the Skolem–Mahler–Lech theorem.

Theorem

For any field k, GALG implies the linear dynamical Mordell–Lang conjecture.

So, we have implications

$\text{UGA} \implies \text{GALG} \implies \text{Linear ML} \implies \text{Skolem–Mahler–Lech}$.
Generalized dynamical Mordell–Lang conjecture

Does dML implies UGA or (at least) GALG?
Let A is generated and related in degrees at most D. Let $V = \text{mod-} A^{\leq D}$ be the category of graded modules with generators and relations in degrees $0..D$. Then $F : M \mapsto M_{\geq 1}[1]$ is an endofunctor of V. For $m > 0$, let $V_m = \{ M \in \text{Ob } V | \dim M_0 = m \}$.

Then GALG is equivalent to the following categorical version of dML: Given a finitely presented graded algebra A of linear growth as above and a positive integer m, is the set $\{ n \geq 0 | F^n(A) \in V_m \}$ always SML?
Generalized dynamical Mordell–Lang conjecture

Does dML implies UGA or (at least) GALG?
Let \(A \) is generated and related in degrees at most \(D \). Let \(V = \text{mod-} A^{\leq D} \) be the category of graded modules with generators and relations in degrees \(0..D \). Then \(F : M \mapsto M_{\geq 1}[1] \) is an endofunctor of \(V \). For \(m > 0 \), let \(V_m = \{ M \in \text{Ob } V | \dim M_0 = m \} \).

Then GALG is equivalent to the following categorical version of dML: Given a finitely presented graded algebra \(A \) of linear growth as above and a positive integer \(m \), is the set \(\{ n \geq 0 | F^n(A) \in V_m \} \) always SML?
Generalized dynamical Mordell–Lang conjecture

Does dML implies UGA or (at least) GALG? Let A is generated and related in degrees at most D. Let $V = \text{mod-} A^{\leq D}$ be the category of graded modules with generators and relations in degrees $0..D$. Then $F : M \mapsto M_{\geq 1}[1]$ is an endofunctor of V. For $m > 0$, let $V_m = \{ M \in \text{Ob } V | \dim M_0 = m \}$.

Then GALG is equivalent to the following categorical version of dML: Given a finitely presented graded algebra A of linear growth as above and a positive integer m, is the set $\{ n \geq 0 | F^n(A) \in V_m \}$ always SML?
Proof of the main theorem

‘Only if’ k an algebraic extension of $F_p \implies$ UGA \implies GALG

For example, let us show: k is finite \implies GALG

Proof. There are finite number (say, N) of isomorphism classes of $M \in \text{mod-}A_{\leq D}$ such that $\dim M_0 \leq C$ (where $\dim A_n \leq C$ for all $n \geq 0$). Then the sequence $h_A(n) = \dim F^n(A)_0$ is periodic with both period and non-periodic segment of length at most N.

‘If’

k contains $F_p[t] \implies$ GALG fails.

Using Lech example ($a_n = (t + 1)^n - t^n - 1$): there is a 6-generated algebra with generators a, b, c, x, y, z with relations $xc - (t + 1)cx, yc - tcy, zc - cz$ and 23 others (the same as for Fermat algebras). Then

$$h_A(n + 3) = \begin{cases} 11, & n = p^m \text{ for some } m \geq 0, \\ 10, & \text{otherwise.} \end{cases}$$
Proof of the main theorem

‘Only if’ \(k \) an algebraic extension of \(F_p \) \(\Rightarrow \) UGA \(\Rightarrow \) GALG

For example, let us show: \(k \) is finite \(\Rightarrow \) GALG

Proof. There are finite number (say, \(N \)) of isomorphism classes of \(M \in \text{mod-}A^{\leq D} \) such that \(\dim M_0 \leq C \) (where \(\dim A_n \leq C \) for all \(n \geq 0 \)). Then the sequence \(h_A(n) = \dim F^n(A)_0 \) is periodic with both period and non-periodic segment of length at most \(N \).

‘If’

\(k \) contains \(F_p[t] \) \(\Rightarrow \) GALG fails.

Using Lech example (\(a_n = (t + 1)^n - t^n - 1 \)): there is a 6-generated algebra with generators \(a, b, c, x, y, z \) with relations \(xc - (t + 1)cx, yc - tcy, zc - cz \) and 23 others (the same as for Fermat algebras). Then

\[
 h_A(n + 3) = \begin{cases}
 11, & n = p^m \text{ for some } m \geq 0, \\
 10, & \text{otherwise}.
 \end{cases}
\]
Proof of the main theorem

‘Only if’ \(k \) an algebraic extension of \(F_p \) \(\Rightarrow \) UGA \(\Rightarrow \) GALG

For example, let us show: \(k \) is finite \(\Rightarrow \) GALG

Proof. There are finite number (say, \(N \)) of isomorphism classes of \(M \in \text{mod-}A \leq D \) such that \(\dim M_0 \leq C \) (where \(\dim A_n \leq C \) for all \(n \geq 0 \)). Then the sequence \(h_A(n) = \dim F^m(A)_0 \) is periodic with both period and non-periodic segment of length at most \(N \).

‘If’

\(k \) contains \(F_p[t] \) \(\Rightarrow \) GALG fails.

Using Lech example \((a_n = (t + 1)^n - t^n - 1) \): there is a 6-generated algebra with generators \(a, b, c, x, y, z \) with relations \(xc - (t + 1)cx, yc - tcy, zc - cz \) and 23 others (the same as for Fermat algebras). Then

\[
h_A(n + 3) = \begin{cases}
11, & n = p^m \text{ for some } m \geq 0, \\
10, & \text{otherwise}.
\end{cases}
\]
Proof of the main theorem

‘Only if’ \(k \) an algebraic extension of \(F_p \implies \) UGA \(\implies \) GALG

For example, let us show: \(k \) is finite \(\implies \) GALG

\textbf{Proof.} There are finite number (say, \(N \)) of isomorphism classes of \(M \in \mod A^{\le D} \) such that \(\dim M_0 \le C \) (where \(\dim A_n \le C \) for all \(n \ge 0 \)). Then the sequence \(h_A(n) = \dim F^m(A)_0 \) is periodic with both period and non-periodic segment of length at most \(N \).

‘If’ \(k \) contains \(F_p[t] \implies \) GALG fails.

Using Lech example (\(a_n = (t+1)^n - t^n - 1 \)): there is a 6-generated algebra with generators \(a, b, c, x, y, z \) with relations \(xc - (t+1)cx, yc - tcy, zc - cz \) and 23 others (the same as for Fermat algebras). Then

\[
h_A(n + 3) = \begin{cases}
11, & n = p^m \text{ for some } m \ge 0, \\
10, & \text{otherwise.}
\end{cases}
\]
Proof of the main theorem

‘Only if’ k an algebraic extension of $F_p \implies$ UGA \implies GALG

For example, let us show: k is finite \implies GALG

Proof. There are finite number (say, N) of isomorphism classes of $M \in \text{mod-} A^{\leq D}$ such that $\dim M_0 \leq C$ (where $\dim A_n \leq C$ for all $n \geq 0$). Then the sequence $h_A(n) = \dim F^m(A)_0$ is periodic with both period and non-periodic segment of length at most N.

‘If’

k contains $F_p[t] \implies$ GALG fails.

Using Lech example ($a_n = (t + 1)^n - t^n - 1$): there is a 6-generated algebra with generators a, b, c, x, y, z with relations $xc - (t + 1)cx, yc - tcy, zc - cz$ and 23 others (the same as for Fermat algebras). Then

$$h_A(n + 3) = \begin{cases}
11, & n = p^m \text{ for some } m \geq 0, \\
10, & \text{otherwise.}
\end{cases}$$
Normal words in algebras of linear growth

The next Proposition follows from [Belov and others, 1997].

\begin{quote}
\textbf{Proposition}

If a (non-graded) algebra A of linear growth is generated by a finite set S, then there are $U, V, W \subseteq S^*$ such that each normal word in A has the form

$$w = ac^n b, \text{ where } a \in U, b \in V, c \in W, n \geq 0.$$

\end{quote}

\begin{quote}
\textbf{Proposition}

Suppose a language L consists of the words of the above form. Then L is regular iff for each $a \in U, b \in V, c \in W$ the set

$$N_{a,b,c} = \{ n \in \mathbb{Z}_+ | ac^n b \in L \}$$

is SML.

\end{quote}
Normal words in algebras of linear growth

The next Proposition follows from [Belov and others, 1997].

Proposition

If a (non-graded) algebra A of linear growth is generated by a finite set S, then there are $U, V, W \subset S^*$ such that each normal word in A has the form

$$w = ac^n b, \text{ where } a \in U, b \in V, c \in W, n \geq 0.$$

Proposition

Suppose a language L consists of the words of the above form. Then L is regular iff for each $a \in U, b \in V, c \in W$ the set

$$N_{a,b,c} = \{n \in \mathbb{Z}_+ | ac^n b \in L\}$$

is SML.
Normal words in algebras of linear growth

The next Proposition follows from [Belov and others, 1997].

Proposition

If a (non-graded) algebra A of linear growth is generated by a finite set S, then there are $U, V, W \subseteq S^*$ such that each normal word in A has the form

$$w = ac^n b, \text{ where } a \in U, b \in V, c \in W, n \geq 0.$$

Proposition

Suppose a language L consists of the words of the above form. Then L is regular iff for each $a \in U, b \in V, c \in W$ the set

$$N_{a,b,c} = \{n \in \mathbb{Z}_+ | ac^n b \in L\}$$

is SML.
Normal words in algebras of linear growth

Corollary

Suppose that the algebra A is automaton. Then there are a generating set $1 \in S \subset A$ and an ordering such that for some $Q \subset S^3$ the set of normal words in A is

$$\{ac^nb|n \geq 0, (a, b, c) \in Q\}.$$
Thank you very much!