Quantized Coordinate Rings and Universal Bialgebras

Szabolcs Mészáros

Central European University, Budapest, Hungary

21th June, 2017
Definition

Let $q \in \mathbb{K}^\times$ and $\mathcal{O}_q(M_N) := \mathbb{C}\langle t_{ij} | 1 \leq i, j \leq N \rangle/(\text{Rel})$ where Rel:

\[
\begin{align*}
& t_{ik}t_{il} - qt_{il}t_{ik} \\
& t_{ik}t_{jk} - qt_{jk}t_{ik} \\
& t_{jk}t_{il} - t_{il}t_{jk} \\
& t_{ik}t_{jl} - t_{jl}t_{ik} - (q - q^{-1})t_{il}t_{jk}
\end{align*}
\]

$(\forall i < j, \ k < l)$

$\exists \hat{R} \in \mathbb{C}^{N^2 \times N^2}$ such that \hat{R} satisfies the Yang-Baxter Eq. and

$$(\text{Rel}) = \left(\sum_{k,l} \hat{R}_{kl}^{ij}t_{km}t_{ln} - t_{ik}t_{jl} \hat{R}_{mn}^{kl} | i,j,m,n \leq N \right)$$
Quantum Matrices

Definition

Let $q \in \mathbb{k}^\times$ and $\mathcal{O}_q(M_N) := \mathbb{C}<t_{ij} \mid 1 \leq i, j \leq N>/\text{Rel}$ where Rel:

$$
t_{ik} t_{il} - qt_{il} t_{ik} \\
t_{ik} t_{jk} - qt_{jk} t_{ik} \\
t_{jk} t_{il} - t_{il} t_{jk} \\
t_{ik} t_{jl} - t_{jl} t_{ik} - (q - q^{-1}) t_{il} t_{jk}$$

$(\forall i < j, k < l)$

$$
\exists \hat{R} \in \mathbb{C}^{N^2 \times N^2} \text{ such that } \hat{R} \text{ satisfies the Yang-Baxter Eq. and }

(\text{Rel}) = \left(\sum_{k,l} \hat{R}_{kl}^{ij} t_{km} t_{ln} - t_{ik} t_{jl} \hat{R}_{mn}^{kl} \mid i,j,m,n \leq N \right)
$$
Quantum Matrices

Definition

Let $q \in \mathbb{K}^\times$ and $\mathcal{O}_q(M_N) := \mathbb{C}\langle t_{ij} \mid 1 \leq i, j \leq N\rangle/(\text{Rel})$ where Rel:

\[
\begin{align*}
t_{ik}t_{il} & - qt_{il}t_{ik} \\
t_{ik}t_{jk} & - qt_{jk}t_{ik} \\
t_{jk}t_{il} & - t_{il}t_{jk} \\
t_{ik}t_{jl} & - t_{jl}t_{ik} - (q - q^{-1})t_{il}t_{jk}
\end{align*}
\]

$(\forall i < j, k < l)$

$\exists \hat{R} \in \mathbb{C}^{N^2 \times N^2}$ such that \hat{R} satisfies the Yang-Baxter Eq. and

\[
(\text{Rel}) = \left(\sum_{k,l} \hat{R}_{kl}^{ij} t_{km} t_{ln} - t_{ik} t_{jl} \hat{R}_{mn}^{kl} | i, j, m, n \leq N \right)
\]
Properties of $\mathcal{O}_q(M_N)$

Assumption: $q \in \mathbb{k}^\times$ is not a root of unity.

$\mathcal{O}_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,
- dimensions of its simple comodules are the same as of $\mathcal{O}(M_N)$,
- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $\mathcal{O}_q(M_N)^{\text{coc}}$, is a commutative polynomial ring of rank N,
- (Sz. M., 2015) $\mathcal{O}_q(M_N)^{\text{coc}}$ is a maximal commutative subalgebra.
Properties of $O_q(M_N)$

Assumption: $q \in \mathbb{k}^\times$ is not a root of unity.

$O_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,
- dimensions of its simple comodules are the same as of $O(M_N)$,
- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $O_q(M_N)^{\text{coc}}$, is a commutative polynomial ring of rank N,
- (Sz. M., 2015) $O_q(M_N)^{\text{coc}}$ is a maximal commutative subalgebra.
Assumption: $q \in k^\times$ is not a root of unity.

$\mathcal{O}_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,
- dimensions of its simple comodules are the same as of $\mathcal{O}(M_N)$,
- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $\mathcal{O}_q(M_N)^{\text{cocom}}$, is a commutative polynomial ring of rank N,
- (Sz. M., 2015) $\mathcal{O}_q(M_N)^{\text{cocom}}$ is a maximal commutative subalgebra.
Properties of $\mathcal{O}_q(M_N)$

Assumption: $q \in \mathbb{k}^\times$ is not a root of unity.

$\mathcal{O}_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,
- dimensions of its simple comodules are the same as of $\mathcal{O}(M_N)$,
- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $\mathcal{O}_q(M_N)^{\text{coc}}$, is a commutative polynomial ring of rank N,
- (Sz. M., 2015) $\mathcal{O}_q(M_N)^{\text{coc}}$ is a maximal commutative subalgebra.
Properties of $\mathcal{O}_q(M_N)$

Assumption: $q \in \mathbb{k}^\times$ is not a root of unity.

$\mathcal{O}_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,
- dimensions of its simple comodules are the same as of $\mathcal{O}(M_N)$,
- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $\mathcal{O}_q(M_N)^{\text{cocom}}$, is a commutative polynomial ring of rank N,
- (Sz. M., 2015) $\mathcal{O}_q(M_N)^{\text{cocom}}$ is a maximal commutative subalgebra.
Properties of $\mathcal{O}_q(M_N)$

Assumption: $q \in \mathbb{k}^\times$ is not a root of unity.

$\mathcal{O}_q(M_N)$ is a bialgebra in a natural way, s.t.

- it is cosemisimple,

- dimensions of its simple comodules are the same as of $\mathcal{O}(M_N)$,

- (Domokos, Lenagan, 2003) the representation ring of its comodules, that is $\mathcal{O}_q(M_N)^{\text{cocl}}$, is a commutative polynomial ring of rank N,

- (Sz. M., 2015) $\mathcal{O}_q(M_N)^{\text{cocl}}$ is a maximal commutative subalgebra.
Ring theory of $\mathcal{O}_q(M_N)$

$\mathcal{O}_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.

1. it is a Noetherian domain,
2. noncommutative UFD, catenary, etc.,
3. it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $\mathcal{O}_q(M_N)$,
4. its relations are of the form $(\hat{R}TT - TT\hat{R})$ for some \hat{R} s.t.

 - Yang-Baxter Eq.: $\hat{R}_{12}\hat{R}_{23}\hat{R}_{12} = \hat{R}_{23}\hat{R}_{12}\hat{R}_{23}$
 - Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{T}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{T}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

2) \Rightarrow 1)
Ring theory of $\mathcal{O}_q(M_N)$

$\mathcal{O}_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.

1. it is a Noetherian domain,
2. noncommutative UFD, catenary, etc.,
3. it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $\mathcal{O}_q(M_N)$,
4. its relations are of the form $(\hat{R} TT - TT \hat{R})$ for some \hat{R} s.t.

Yang-Baxter Eq.: $\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}$

Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{T}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{T}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

2) \implies 1)
Ring theory of $\mathcal{O}_q(M_N)$

$\mathcal{O}_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.

- it is a Noetherian domain,
- noncommutative UFD, catenary, etc.,
- it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $\mathcal{O}_q(M_N)$,
- its relations are of the form $(\hat{R}TT - TT\hat{R})$ for some \hat{R} s.t.

Yang-Baxter Eq.: $\hat{R}_{12}\hat{R}_{23}\hat{R}_{12} = \hat{R}_{23}\hat{R}_{12}\hat{R}_{23}$

Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{T}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{T}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

$2) \Rightarrow 1)$
Ring theory of $\mathcal{O}_q(M_N)$

$\mathcal{O}_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.

- it is a Noetherian domain,
- noncommutative UFD, catenary, etc.,

1. it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $\mathcal{O}_q(M_N)$,

2. its relations are of the form $(\hat{R}TT - TT\hat{R})$ for some \hat{R} s.t.

 Yang-Baxter Eq.: $\hat{R}_{12}\hat{R}_{23}\hat{R}_{12} = \hat{R}_{23}\hat{R}_{12}\hat{R}_{23}$

 Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{P}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{P}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

2) \Rightarrow 1)
Quantized Coordinate Rings and Universal Bialgebras

Ring theory of $O_q(M_N)$

$O_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.
- it is a Noetherian domain,
- noncommutative UFD, catenary, etc.,
- it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $O_q(M_N)$,
- its relations are of the form $(\hat{R}TT - TT\hat{R})$ for some \hat{R} s.t.

Yang-Baxter Eq.: $\hat{R}_{12}\hat{R}_{23}\hat{R}_{12} = \hat{R}_{23}\hat{R}_{12}\hat{R}_{23}$

Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{T}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{T}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

2) \Rightarrow 1)
Ring theory of $\mathcal{O}_q(M_N)$

$\mathcal{O}_q(M_N)$ is a fin. pres. graded algebra generated in degree 1, s.t.

1. it is a Noetherian domain,
2. noncommutative UFD, catenary, etc.,
3. it is a PBW-algebra, i.e. ordered monomials in $t_{11}, t_{12}, \ldots, t_{nn}$ form a basis in $\mathcal{O}_q(M_N)$,
4. its relations are of the form $(\hat{R} TT - TT \hat{R})$ for some \hat{R} s.t.

Yang-Baxter Eq.: $\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}$

Hecke equation: $(\hat{R} + 1)(\hat{R} - q) = 0$

$\mathcal{T}(V)/\text{Im}(\hat{R} + 1)$ and $\mathcal{T}(V)/\text{Im}(\hat{R} - q)$ are PBW-algebras.

Theorem (Sudbery)

2) \Rightarrow 1)
Universal bialgebras

Definition/Proposition (Manin, Takeuchi, Sudbery, ...)

For any decomp. \(V^\otimes 2 = S \oplus T \),

\[
\mathcal{M}(S, T) := \mathcal{T}(\text{End}(V))/\tau_{23}(S \otimes S^\perp + T \otimes T^\perp)
\]

is a bialgebra coacting on \(\mathcal{T}(V)/(S) \) and \(\mathcal{T}(V)/(T) \).

For \((S, T)\):

- \(\text{Sym}^2(V), \Lambda^2(V) \hookrightarrow \mathcal{O}(M_N)\)
- \(\text{Sym}^2_q(V), \Lambda^2_q(V) \hookrightarrow \mathcal{O}_q(M_N)\) where
 \[
 \Lambda^2_q(V) = \langle x_i x_j - qx_j x_i \mid 1 \leq i < j \leq N \rangle \\
 \text{Sym}^2_q(V) = \langle qx_i x_j + x_j x_i \mid 1 \leq i < j \leq N \rangle
 \]
Universal bialgebras

Definition/Proposition (Manin, Takeuchi, Sudbery, ...)

For any decomp. $V^\otimes 2 = S \oplus T$,

$$\mathcal{M}(S, T) := \mathcal{T}(\text{End}(V))/\tau_{23}(S \otimes S^\perp + T \otimes T^\perp)$$

is a bialgebra coacting on $\mathcal{T}(V)/(S)$ and $\mathcal{T}(V)/(T)$.

For (S, T):

- $\text{Sym}^2(V), \Lambda^2(V) \hookrightarrow \mathcal{O}(M_N)$
- $\text{Sym}_q^2(V), \Lambda_q^2(V) \hookrightarrow \mathcal{O}_q(M_N)$ where
 $$\Lambda_q^2(V) = \langle x_ix_j - qx_jx_i \mid 1 \leq i < j \leq N \rangle$$
 $$\text{Sym}_q^2(V) = \langle qx_ix_j + x_jx_i \mid 1 \leq i < j \leq N \rangle$$
Universal bialgebras

Definition/Proposition (Manin, Takeuchi, Sudbery, ...)

For any decomp. \(V \otimes 2 = S \oplus T \),

\[
\mathcal{M}(S, T) := \mathcal{I}(\text{End}(V))/\tau_{23}(S \otimes S^\perp + T \otimes T^\perp)
\]

is a bialgebra coacting on \(\mathcal{I}(V)/(S) \) and \(\mathcal{I}(V)/(T) \).

**For \((S, T)\):

- \(\text{Sym}^2(V), \wedge^2(V) \hookrightarrow \mathcal{O}(M_N)\)
- \(\text{Sym}^2_q(V), \wedge^2_q(V) \hookrightarrow \mathcal{O}_q(M_N)\) where
 \[
 \wedge^2_q(V) = \langle x_i x_j - qx_j x_i \mid 1 \leq i < j \leq N \rangle \\
 \text{Sym}^2_q(V) = \langle qx_i x_j + x_j x_i \mid 1 \leq i < j \leq N \rangle
 \]
Universal bialgebras

Definition/Proposition (Manin, Takeuchi, Sudbery, ...)

For any decomp. $V^\otimes 2 = S \oplus T$,

$$\mathcal{M}(S, T) := \mathcal{T}\left(\mathrm{End}(V)\right)/\tau_{23}(S \otimes S^\perp + T \otimes T^\perp)$$

is a bialgebra coacting on $\mathcal{T}(V)/(S)$ and $\mathcal{T}(V)/(T)$.

For (S, T):
- $\mathrm{Sym}^2(V), \wedge^2(V) \hookrightarrow \mathcal{O}(M_N)$
- $\mathrm{Sym}_q^2(V), \wedge_q^2(V) \hookrightarrow \mathcal{O}_q(M_N)$ where
 $$\wedge_q^2(V) = \langle x_i x_j - q x_j x_i \mid 1 \leq i < j \leq N \rangle$$
 $$\mathrm{Sym}_q^2(V) = \langle q x_i x_j + x_j x_i \mid 1 \leq i < j \leq N \rangle$$
Universal bialgebras

Definition/Proposition (Manin, Takeuchi, Sudbery, ...)

For any decompo. $V^\otimes 2 = S \oplus T$,

$$\mathcal{M}(S, T) := \mathcal{T}(\text{End}(V))/\tau_{23}(S \otimes S^\perp + T \otimes T^\perp)$$

is a bialgebra coacting on $\mathcal{T}(V)/(S)$ and $\mathcal{T}(V)/(T)$.

For (S, T):

- $\text{Sym}^2(V), \Lambda^2(V) \hookrightarrow \mathcal{O}(M_N)$
- $\text{Sym}_q^2(V), \Lambda_q^2(V) \hookrightarrow \mathcal{O}_q(M_N)$ where
 $$\Lambda_q^2(V) = \langle x_i x_j - q x_j x_i \mid 1 \leq i < j \leq N \rangle$$
 $$\text{Sym}_q^2(V) = \langle q x_i x_j + x_j x_i \mid 1 \leq i < j \leq N \rangle$$
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N+1}{2}$$

hence $\dim T = \dim \Lambda^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(\mathcal{M}_N)_2 = \binom{N^2+1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 =$?
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N+1}{2}$$

hence $\dim T = \dim \Lambda^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(M_N)_2 = \binom{N^2+1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 =$?
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N+1}{2}$$

hence $\dim T = \dim \Lambda^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(\mathcal{M}_N)_2 = \binom{N^2+1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 = ?$
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N + 1}{2}$$

hence $\dim T = \dim \bigwedge^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(\mathcal{M}_N)_2 = \binom{N^2 + 1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 =$?
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N+1}{2}$$

hence $\dim T = \dim \Lambda^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(\mathcal{M}_N)_2 = \binom{N^2+1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 =$?
Basic properties of $\mathcal{M}(S, T)$

$\mathcal{M} := \mathcal{M}(S, T)$ is a

- finitely generated, quadratic algebra,
- $\dim \mathcal{M}_1 = N^2$ and $\dim \mathcal{M}_2 = (\dim S)^2 + (\dim T)^2$,

Assume that

$$\dim S = \dim \text{Sym}^2(V) = \binom{N+1}{2}$$

hence $\dim T = \dim \Lambda^2(V) = \binom{N}{2}$ and

$$\dim \mathcal{M}_2 = \dim \mathcal{O}(M_N)_2 = \binom{N^2+1}{2}.$$

Question

When does \mathcal{M} have a PBW-basis, i.e. an ordered basis in \mathcal{M}_1 s.t. ordered monomials form a basis in \mathcal{M}? In particular, $\dim \mathcal{M}_3 =$?
Existence of an R-matrix

Theorem (Sz. M.)

Let $(V, \langle ., . \rangle)$ be a fin. dim. Hilbert space, $S \subseteq V \otimes V$, $T = S^\perp$. If

$$\dim(S \otimes V \cap V \otimes S) = \binom{N+2}{3} \quad \dim(S \otimes V \cap V \otimes T) = 0$$

then

$$\dim \mathcal{M}_3 \leq \dim \mathcal{O}(M_3) = \binom{N^2+2}{3}$$

with equality if and only if $\text{Rel}(\mathcal{M}) = (\hat{R}TT - TT\hat{R})$ for some $\hat{R} \in \text{End}(V \otimes V)$ s.t.

$$\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}$$

Moreover, in this case, \hat{R} satisfies the Hecke equation.
Theorem (Sz. M.)

Let \((V, \langle ., . \rangle)\) be a fin. dim. Hilbert space, \(S \subseteq V \otimes V\), \(T = S^\perp\). If

\[
\dim(S \otimes V \cap V \otimes S) = \binom{N+2}{3} \quad \dim(S \otimes V \cap V \otimes T) = 0
\]

then

\[
\dim \mathcal{M}_3 \leq \dim \mathcal{O}(M_N)_3 = \binom{N^2 + 2}{3}
\]

with equality if and only if \(\text{Rel}(\mathcal{M}) = (\hat{R} TT - TT \hat{R})\) for some \(\hat{R} \in \text{End}(V \otimes V)\) s.t.

\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}
\]

Moreover, in this case, \(\hat{R}\) satisfies the Hecke equation.
Four subspace quiver

Observation (generalizing Raedschelders, Van den Bergh)

As an algebra

$$\mathcal{M}_n^\vee \cong$$
Four subspace quiver

Observation (basically by M. Van den Bergh)
As an algebra

\[M_n^\vee \cong \{ e \in \text{End}(V^{\otimes n}) \mid e(U) \subseteq U, \]
\[U \in \{ S_{i,i+1}, T_{i,i+1} \mid i = 1, \ldots, k-1 \} \}

where \(S_{i,i+1} = V^{\otimes (i-1)} \otimes S \otimes V^{\otimes (n-i-1)} \) and similarly for \(T \).

Hence,

\[M_3^\vee \cong \text{End}_{\tilde{D}_4}(\rho) \]

for the rep. \(\rho = (V^{\otimes 3}, S_{12}, S_{23}, T_{12}, T_{23}) \) of the (tame Euclidean) quiver \(\tilde{D}_4 \).
Four subspace quiver

Observation (basically by M. Van den Bergh)

As an algebra

$$\mathcal{M}_n^\vee \cong \{ e \in \text{End}(V^\otimes n) \mid e(U) \subseteq U,\
\text{such that} \ U \in \{S_{i,i+1}, T_{i,i+1} \mid i = 1, \ldots, k-1\}\}$$

where $S_{i,i+1} = V^{\otimes (i-1)} \otimes S \otimes V^{\otimes (n-i-1)}$ and similarly for T.

Hence,

$$\mathcal{M}_3^\vee \cong \text{End}_{\tilde{D}_4}(\rho)$$

for the rep. $\rho = (V^\otimes 3, S_{12}, S_{23}, T_{12}, T_{23})$ of the (tame Euclidean) quiver \tilde{D}_4.
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S^\perp$.

- The config. $(S_{12}, S_{23}, S_{12}^\perp, S_{23}^\perp)$ is determined by

$$\text{Spec} \left(\text{Proj}_{S_{12}} \circ \text{Proj}_{S_{23}} \circ \text{Proj}_{S_{12}} \right)$$

as a multiset (Name in real case: principal angles.).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, S_{12}^\perp gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}}) \backslash \{0, 1\}$, $\lambda \neq \mu$ then $\nexists \hat{R}$ for \mathcal{M}.

- Greatest dim $\mathcal{M}_3 \iff S_{12}$ and S_{23} are isoclinic modulo $S_{12} \cap S_{23} \iff \nexists \hat{R}$
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S^\perp$.

- The config. $(S_{12}, S_{23}, S_{12}^\perp, S_{23}^\perp)$ is determined by

$$\text{Spec}(\text{Proj}_{S_{12}} \circ \text{Proj}_{S_{23}} \circ \text{Proj}_{S_{12}})$$

as a multiset (Name in real case: *principal angles*).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, S_{12}^\perp gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}}) \setminus \{0, 1\}$, $\lambda \neq \mu$ then $\nexists \hat{R}$ for \mathcal{M}.

- Greatest dim $\mathcal{M}_3 \iff S_{12}$ and S_{23} are *isoclinic* modulo $S_{12} \cap S_{23} \iff \exists \hat{R}$
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S^\perp$.

- The config. $(S_{12}, S_{23}, S_{12}^\perp, S_{23}^\perp)$ is determined by
 \[
 \text{Spec}(\Proj_{S_{12}} \circ \Proj_{S_{23}} \circ \Proj_{S_{12}})
 \]
 as a multiset (Name in real case: *principal angles*).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, S_{12}^\perp gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}}) \setminus \{0, 1\}$, $\lambda \neq \mu$ then $\not\exists \hat{R}$ for \mathcal{M}.

- Greatest dim $\mathcal{M}_3 \iff S_{12}$ and S_{23} are *isoclinic* modulo $S_{12} \cap S_{23} \iff \exists \hat{R}$
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S_{⊥}$.

- The config. $(S_{12}, S_{23}, S_{⊥12}, S_{⊥23})$ is determined by

 $$\text{Spec}(\text{Proj}_{S_{12}} \circ \text{Proj}_{S_{23}} \circ \text{Proj}_{S_{12}})$$

 as a multiset (Name in real case: *principal angles*).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, $S_{⊥12}$ gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}}) \setminus \{0,1\}$, $\lambda \neq \mu$ then $\nexists \hat{R}$ for M.

- Greatest dim $\mathcal{M}_3 \iff S_{12}$ and S_{23} are *isoclinic* modulo $S_{12} \cap S_{23} \iff \exists \hat{R}$
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S^\perp$.

- The config. $(S_{12}, S_{23}, S_{12}^\perp, S_{23}^\perp)$ is determined by

 $$\text{Spec}(\text{Proj}_{S_{12}} \circ \text{Proj}_{S_{23}} \circ \text{Proj}_{S_{12}})$$

 as a multiset (Name in real case: principal angles).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, S_{12}^\perp gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}})\setminus\{0,1\}$, $\lambda \neq \mu$ then $\nexists \hat{R}$ for \mathcal{M}.

- Greatest dim $\mathcal{M}_3 \iff S_{12}$ and S_{23} are isoclinic modulo $S_{12} \cap S_{23} \iff \exists \hat{R}$.
Orthogonal case

Special case: V is a fin. dim. Hilbert space, $T = S^\perp$.

- The config. $(S_{12}, S_{23}, S_{12}^\perp, S_{23}^\perp)$ is determined by
 \[
 \text{Spec}(\text{Proj}_{S_{12}} \circ \text{Proj}_{S_{23}} \circ \text{Proj}_{S_{12}})
 \]
 as a multiset (Name in real case: principal angles).

- Fewer distinct angles \Rightarrow more endomorphisms of ρ.

- $S_{12} \cap S_{23}$ gives eigenvalue 1, S_{12}^\perp gives 0,

- If $\lambda, \mu \in \text{Spec}(P_{S_{12}} P_{S_{23}} P_{S_{12}}) \backslash \{0, 1\}$, $\lambda \neq \mu$ then $\not\exists \hat{R}$ for \mathcal{M}.

- Greatest dim $\mathcal{M}_3 \iff$ S_{12} and S_{23} are isoclinic modulo $S_{12} \cap S_{23} \iff \exists \hat{R}$
Motivation/application

- Application: Takeuchi’s conjecture: quantum orthogonal bialgebra $\tilde{\mathcal{M}}_+(3) \rightarrow O_q(\mathfrak{so}_3)$ has a PBW-basis. It is false!

- Notes:
 - the Hermitian scalar product is not necessary,
 - generally, non-semisimple representations of \tilde{D}_4 appear,
 - further directions: related Hopf algebras, corepresentation theory of $\tilde{\mathcal{M}}$, further ring theoretical properties of $\tilde{\mathcal{M}}$.
Application: Takeuchi’s conjecture: quantum orthogonal bialgebra $\tilde{M}_+(3) \rightarrow O_q(so_3)$ has a PBW-basis. It is false!

Notes:

- the Hermitian scalar product is not necessary,
- generally, non-semisimple representations of \tilde{D}_4 appear,
- further directions: related Hopf algebras, corepresentation theory of M, further ring theoretical properties of M.

Motivation/application

- Application: Takeuchi’s conjecture: quantum orthogonal bialgebra $\tilde{M}_+(3) \rightarrow \mathcal{O}_q(so_3)$ has a PBW-basis. It is false!

- Notes:
 - the Hermitian scalar product is not necessary,
 - generally, non-semisimple representations of \tilde{D}_4 appear,
 - further directions: related Hopf algebras, corepresentation theory of M, further ring theoretical properties of M.
Application: Takeuchi’s conjecture: quantum orthogonal bialgebra $\tilde{\mathcal{M}}_+(3) \rightarrow \mathfrak{O}_q(\mathfrak{so}_3)$ has a PBW-basis. It is false!

Notes:

- the Hermitian scalar product is not necessary,
- generally, non-semisimple representations of $\tilde{\mathcal{D}}_4$ appear,
- further directions: related Hopf algebras, corepresentation theory of \mathcal{M}, further ring theoretical properties of \mathcal{M}.
Motivation/application

- Application: Takeuchi’s conjecture: quantum orthogonal bialgebra $\tilde{M}_+(3) \rightarrow \mathcal{O}_q(\mathfrak{so}_3)$ has a PBW-basis. It is false!

- Notes:
 - the Hermitian scalar product is not necessary,
 - generally, non-semisimple representations of \tilde{D}_4 appear,
 - further directions: related Hopf algebras, corepresentation theory of M, further ring theoretical properties of M.
Thank you for your attention!
References

- T. Hayashi, Quantum deformations of classical groups, Publ. RIMS Kyoto Univ. 28 (1992), 57-81.