Application of the graded Posner theorem

Y. Karasik

1Department of Mathematics
Technion - Israel Institute of Technology
Definition

Let G be a group and \mathbb{F} be a field. An (associative) \mathbb{F}-algebra A is called G-graded if

$$A = \bigoplus_{g \in G} A_g,$$

where A_g is an \mathbb{F}-subspace of A and $A_g A_h \subseteq A_{gh}$ for every $g, h \in G$.

A is G-simple if it does not have any non-trivial graded ideals.

Example (Fine grading)

$A = \mathbb{F} \alpha H = \bigoplus_{g \in H} \mathbb{F} \cdot u_g$, where H is a subgroup of G.
Group graded algebras

Definition

Let G be a group and \mathbb{F} be a field. An (associative) \mathbb{F}-algebra A is called G-graded if

$$A = \bigoplus_{g \in G} A_g,$$

where A_g is an \mathbb{F}-subspace of A and $A_g A_h \subseteq A_{gh}$ for every $g, h \in G$.

- A is G-simple if it does not have any non-trivial graded ideals.
Definition

Let G be a group and \mathbb{F} be a field. An (associative) \mathbb{F}-algebra A is called G-graded if

$$A = \bigoplus_{g \in G} A_g,$$

where A_g is an \mathbb{F}-subspace of A and $A_g A_h \subseteq A_{gh}$ for every $g, h \in G$.

- A is G-simple if it does not have any non-trivial graded ideals.

Example (Fine grading)

$$A = \mathbb{F}^\alpha H = \bigoplus_{g \in H} \mathbb{F} \cdot u_g,$$ where H is a subgroup of G.
More examples

Example

Take $G = \mathbb{Z}/2\mathbb{Z} = \{0, \bar{1}\}$ and consider

$$A_0 = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}; \quad A_{\bar{1}} = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ w & z & 0 \end{pmatrix}$$

In short, $$\begin{pmatrix} \bar{0} & \bar{0} & \bar{1} \\ \bar{0} & \bar{0} & \bar{1} \\ \bar{1} & \bar{1} & \bar{0} \end{pmatrix}$$
More examples

Example

Take $G = \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}$ and consider

$$A_0 = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}; \quad A_\bar{1} = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ w & z & 0 \end{pmatrix}$$

In short, $$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Definition

Let G be a group and $\overrightarrow{g} = (g_1, \ldots, g_n) \in G^{\times n}$. The G-graded \mathbb{F} algebra $A = M_{\overrightarrow{g}}(\mathbb{F})$ is the algebra $M_n(\mathbb{F})$ graded by:
More examples

Example

Take $G = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ and consider

$$A_0 = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix};
A_1 = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ w & z & 0 \end{pmatrix}$$

In short, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Definition

Let G be a group and $\vec{g} = (g_1, ..., g_n) \in G^{\times n}$. The G-graded \mathbb{F} algebra $A = M_{\vec{g}}(\mathbb{F})$ is the algebra $M_n(\mathbb{F})$ graded by:

$$
\begin{pmatrix}
 g_1^{-1}g_1 & g_1^{-1}g_2 & g_1^{-1}g_3 & \cdots & g_1^{-1}g_n \\
 g_2^{-1}g_1 & g_2^{-1}g_2 & g_2^{-1}g_3 & \cdots & g_2^{-1}g_b \\
 g_3^{-1}g_3 & g_3^{-1}g_3 & \cdots & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \cdots & \cdots \\
 g_n^{-1}g_1 & g_n^{-1}g_2 & \cdots & \cdots & g_n^{-1}g_n = e \\
\end{pmatrix}
$$
Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $K = \mathbb{Z}(A)$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional K-algebra. This holds for \mathbb{F} of characteristic zero and G a residually finite group. If one replaces "G-semiprime" by "G-semisimple", the theorem is true for every G. The main ingredient in the proof is the existence of a special kind of central polynomials:
Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $K := Z(A)_e$ is a field.

This holds for \mathbb{F} of characteristic zero and G a residually finite group.

If one replaces "G-semiprime" by "G-semisimple", the theorem is true for every G. The main ingredient in the proof is the existence of a special kind of central polynomials:
Suppose A is a G-graded F-algebra such that:

1. $K := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.

Then, A is a G-simple finite dimensional K-algebra.

This holds for F of characteristic zero and G a residually finite group.

If one replaces "G-semiprime" by "G-semisimple", the theorem is true for every G. The main ingredient in the proof is the existence of a special kind of central polynomials:
Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $\mathbb{K} := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional \mathbb{K}-algebra.

This holds for \mathbb{F} of characteristic zero and G a residually finite group.

If one replaces "G-semiprime" by "G-semisimple", the theorem is true for every G.

The main ingredient in the proof is the existence of a special kind of central polynomials:
Posner’s Theorem for G-graded algebras

Theorem

Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $\mathbb{K} := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional \mathbb{K}-algebra.
Posner’s Theorem for G-graded algebras

Theorem

Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $\mathbb{K} := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional \mathbb{K}-algebra.

- This holds for \mathbb{F} of characteristic zero and G a residually finite group.
Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $\mathbb{K} := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional \mathbb{K}-algebra.

- This holds for \mathbb{F} of characteristic zero and G a residually finite group.
- If one replaces “G-semiprime” by “G-semisimple”, the theorem is true for every G.
Posner’s Theorem for G-graded algebras

Theorem

Suppose A is a G-graded \mathbb{F}-algebra such that:

1. $\mathbb{K} := Z(A)_e$ is a field.
2. A satisfies an ordinary PI.
3. A is G-semiprime (this holds if G is finite and $J(A) = 0$).

Then, A is a G-simple finite dimensional \mathbb{K}-algebra.

- This holds for \mathbb{F} of characteristic zero and G a residually finite group.
- If one replaces “G-semiprime” by “G-semisimple”, the theorem is true for every G.
- The main ingredient in the proof is the existence of a special kind of central polynomials:
Strong central polynomials

Definition

A polynomial \(f(x_1, ..., x_n) \in F \langle X \rangle \) is a **strong central polynomial of exponent** \(d^2 \) **for the group** \(G \), if:

1. \(f \) is central (non-identity) for every \(G \)-simple algebra \(A \) of exponent \(d^2 \).

2. For every homogeneous elements \(a_1, ..., a_n \) (i.e., they are inside \(\bigcup_{g \in G} A_g \)),
 \[
 f(a_1, ..., a_n) \neq 0 \iff f(a_1, ..., a_n)e \neq 0.
 \]

It turns out that when \(F \) is of characteristic zero, every central polynomial for \(A \) is strong for every group \(G \).
A polynomial \(f(x_1, \ldots, x_n) \in F\langle X \rangle \) is a strong central polynomial of exponent \(d^2 \) for the group \(G \), if:

1. \(f \) is central (non-identity) for every \(G \)-simple algebra \(A \) of exponent \(d^2 \).
Strong central polynomials

Definition

A polynomial \(f(x_1, \ldots, x_n) \in F\langle X \rangle \) is a **strong central polynomial of exponent** \(d^2 \) **for the group** \(G \), if:

1. \(f \) is central (non-identity) for every \(G \)-simple algebra \(A \) of exponent \(d^2 \). Moreover, For every homogeneous elements \(a_1, \ldots, a_n \) (i.e. they are inside \(\bigcup_{g \in G} Ag \)),
 \[
 f(a_1, \ldots, a_n) \neq 0 \iff f(a_1, \ldots, a_n)_e \neq 0.
 \]
Strong central polynomials

Definition

A polynomial \(f(x_1, \ldots, x_n) \in \mathbb{F}\langle X \rangle \) is a **strong central polynomial of exponent** \(d^2 \) **for the group** \(G \), if:

1. \(f \) is central (non-identity) for every \(G \)-simple algebra \(A \) of exponent \(d^2 \). Moreover, For every **homogeneous** elements \(a_1, \ldots, a_n \) (i.e. they are inside \(\bigcup_{g \in G} A_g \)),

 \[
 f(a_1, \ldots, a_n) \neq 0 \iff f(a_1, \ldots, a_n)_e \neq 0.
 \]

2. \(f \) is an identity for every \(G \)-simple algebra of smaller exponent.

It turns out that when \(\mathbb{F} \) is of characteristic zero, every **central polynomial for** \(A \) **is strong for every group** \(G \).
Strong central polynomials

Definition

A polynomial \(f(x_1, \ldots, x_n) \in \mathbb{F}\langle X \rangle \) is a strong central polynomial of exponent \(d^2 \) for the group \(G \), if:

1. \(f \) is central (non-identity) for every \(G \)-simple algebra \(A \) of exponent \(d^2 \). Moreover, for every homogeneous elements \(a_1, \ldots, a_n \) (i.e. they are inside \(\bigcup_{g \in G} A_g \)),

\[
 f(a_1, \ldots, a_n) \neq 0 \iff f(a_1, \ldots, a_n)e \neq 0.
\]

2. \(f \) is an identity for every \(G \)-simple algebra of smaller exponent.

It turns out that when \(\mathbb{F} \) is of characteristic zero, every central polynomial for \(A \) is strong for every group \(G \).
A theorem of Aljadeff and Haile

Theorem

Let G be a group and \mathbb{F} an algebraically closed field of 0 characteristic and A, B two f.d. G-simple \mathbb{F}-algebras.

Notice that the theorem is easy when $G = \{e\}$. Indeed, $A = \mathbb{M}_n(\mathbb{F})$, $B = \mathbb{M}_m(\mathbb{F})$ and $n^2 = \exp(A)$ is determined by $\text{id}(A)$.

We now show how one can use Posner's theorem in order to get a quick proof of this theorem.
A theorem of Aljadeff and Haile

Theorem

Let G be a group and \mathbb{F} an algebraically closed of 0 characteristic and A, B two f.d. G-simple \mathbb{F}-algebras. Then, A is G-isomorphic to B iff $\text{id}_G(A) = \text{id}_G(B)$.

Notice that the theorem is easy when $G = \{e\}$. Indeed, $A = M_n(\mathbb{F})$, $B = M_m(\mathbb{F})$ and $n = \exp(A)$ is determined by $\text{id}(A)$. We now show how one can use Posner’s theorem in order to get a quick proof of this theorem.
Let G be a group and \mathbb{F} an algebraically closed field of characteristic 0 and A, B two f.d. \mathbb{F}-algebras. Then, A is G-isomorphic to B iff $id_G(A) = id_G(B)$.

Notice that the theorem is easy when $G = \{e\}$.
A theorem of Aljadeff and Haile

Theorem

Let G be a group and \mathbb{F} an algebraically closed of 0 characteristic and A, B two f.d. G-simple \mathbb{F}-algebras. Then, A is G-isomorphic to B iff $id_G(A) = id_G(B)$.

- Notice that the theorem is easy when $G = \{e\}$. Indeed, $A = M_n(\mathbb{F}), B = M_m(\mathbb{F})$ and $n^2 = \exp(A)$ is determined by $id(A)$.
A theorem of Aljadeff and Haile

Theorem

Let G be a group and \mathbb{F} an algebraically closed field of characteristic 0 and A, B two f.d. \mathbb{F}-simple G-algebras. Then, A is G-isomorphic to B iff $\text{id}_G(A) = \text{id}_G(B)$.

- Notice that the theorem is easy when $G = \{e\}$. Indeed, $A = M_n(\mathbb{F})$, $B = M_m(\mathbb{F})$ and $n^2 = \exp(A)$ is determined by $\text{id}(A)$.
- We now show how one can use Posner's theorem in order to get a quick proof of this theorem.
Let A be a G-graded \mathbb{F}-algebra. The (G-graded) relatively free algebra of A is defined to be

$$U_A := \mathbb{F} \langle X_G \rangle / id_G(A).$$
Generic algebras

Let A be a G-graded \mathbb{F}-algebra. The (G-graded) relatively free algebra of A is defined to be

$$U_A := \mathbb{F} \langle X_G \rangle / id_G(A).$$

Every graded algebra B with the same graded identities as A, is a homomorphic image of U_A.
Let A be a G-graded \mathbb{F}-algebra. The (G-graded) relatively free algebra of A is defined to be

$$U_A := \mathbb{F} \langle X_G \rangle / id_G(A).$$

Every graded algebra B with the same graded identities as A, is a homomorphic image of U_A.

If A is also f.d., then it is possible to embed U_A in a form of A:
Let A be a G-graded F-algebra. The (G-graded) relatively free algebra of A is defined to be

$$U_A := F\langle X_G \rangle / \text{id}_G(A).$$

Every graded algebra B with the same graded identities as A, is a homomorphically image of U_A.

If A is also f.d., then it is possible to embed U_A in a form of A:

That is, there is a field \mathbb{L}_A for which U_A is embedded inside $A_{\mathbb{L}_A} := A \otimes_F \mathbb{L}_A$.

We know that \(id_G(A) = id_G(B) \), so \(\mathbb{F}\langle X \rangle / id_G(B) \simeq \mathbb{F}\langle X \rangle / id_G(B) \).
Proof of the theorem

- We know that $id_G(A) = id_G(B)$, so
 $\mathbb{F}\langle X \rangle / id_G(B) \cong \mathbb{F}\langle X \rangle / id_G(B)$.

- In other words,

\[U_A \cong U_B \]

\[A_{L_A} \cong B_{L_B} \]
Proof of the theorem

- We know that $id_G(A) = id_G(B)$, so $\mathbb{F} \langle X \rangle / id_G(B) \simeq \mathbb{F} \langle X \rangle / id_G(B)$.
- In other words,

$$\begin{array}{c}
U_A \\ \downarrow \\
\simeq \\
\downarrow \\
A_{\mathbb{L}A}
\end{array} \quad \begin{array}{c}
U_B \\ \downarrow \\
\simeq \\
\downarrow \\
B_{\mathbb{L}B}
\end{array}$$

- We want to use Posner’s theorem, but the center is not be a field...
Proof of the theorem

- We know that \(\text{id}_G(A) = \text{id}_G(B) \), so \(\mathbb{F} \langle X \rangle / \text{id}_G(B) \cong \mathbb{F} \langle X \rangle / \text{id}_G(B) \).
- In other words,

\[
\begin{array}{ccc}
U_A & \cong & U_B \\
\downarrow & & \downarrow \\
A_{\mathbb{L}A} & & B_{\mathbb{L}B}
\end{array}
\]

- We want to use Posner’s theorem, but the center is not be a field...
- The evaluation of \(Z(U_A)_e \) to \(A \), is inside \(Z(A)_e = \mathbb{F} \cdot 1_A \). So, for \(0 \neq f \in Z(U_A)_e \) and \(0 \neq g \in U_A \), we have an evaluation \(f(\overrightarrow{a}) \cdot g(\overrightarrow{a}) = \alpha g(\overrightarrow{a}) \neq 0 \), where \(0 \neq \alpha \in \mathbb{F} \).
Proof of the theorem

- We know that $id_G(A) = id_G(B)$, so $\mathbb{F}\langle X \rangle / id_G(B) \simeq \mathbb{F}\langle X \rangle / id_G(B)$.
- In other words,

$$
\begin{array}{c}
U_A \xrightarrow{\simeq} U_B \\
\downarrow \downarrow \\
A_{L_A} \xrightarrow{} B_{L_B}
\end{array}
$$

- We want to use Posner’s theorem, but the center is not be a field...
- The evaluation of $Z(U_A)_e$ to A, is inside $Z(A)_e = \mathbb{F} \cdot 1_A$. So, for $0 \neq f \in Z(U_A)_e$ and $0 \neq g \in U_A$, we have an evaluation $f(\overrightarrow{a}) \cdot g(\overrightarrow{a}) = \alpha g(\overrightarrow{a}) \neq 0$, where $0 \neq \alpha \in \mathbb{F}$.
- We may consider the algebras $S_A := Z(U_A)_e^{-1}U_A \simeq Z(U_B)_e^{-1}U_B =: S_B$. Both are over \mathbb{K} =the quotient field of $Z(U_A)_e = Z(U_B)_e$ and have the same G-graded identities as A (and B).
Using Posner’s theorem

- Now we can use Posner’s theorem:

\[
Z(SA) = K
\]

which is a field.

Clearly \(A \) is PI (since f.d.), so also \(SA \).

\(J(UA) = \emptyset \), since an evaluation of \(f \in J(UA) \) into \(A \) is inside \(J(A) = \emptyset \). Hence, also \(JS(A) = \emptyset \).

So, \(SA \) and \(SB \) are \(G \)-simple and f.d. over \(K \).
Now we can use Posner’s theorem:

- We made $Z(S_A) = K$ which is a field.
Using Posner’s theorem

- Now we can use Posner’s theorem:
 - We made $Z(S_A)_e = \mathbb{K}$ which is a field.
 - Clearly A is PI (since f.d.), so also S_A.
Using Posner’s theorem

- Now we can use Posner’s theorem:
 - We made $Z(S_A)_e = K$ which is a field.
 - Clearly A is PI (since f.d.), so also S_A.
 - $J(U_A) = 0$, since an evaluation of $f \in J(U_A)$ into A is inside $J(A) = 0$. Hence, also $J(S_A) = 0$.

Now we can use Posner’s theorem:

- We made $Z(S_A)_e = \mathbb{K}$ which is a field.
- Clearly A is PI (since f.d.), so also S_A.
- $J(U_A) = 0$, since an evaluation of $f \in J(U_A)$ into A is inside $J(A) = 0$. Hence, also $J(S_A) = 0$.
- So, S_A and S_B are G-simple and f.d. over \mathbb{K}.
Now we can use Posner’s theorem:

- We made $Z(S_A)_e = \mathcal{K}$ which is a field.
- Clearly A is PI (since f.d.), so also S_A.
- $J(U_A) = 0$, since an evaluation of $f \in J(U_A)$ into A is inside $J(A) = 0$. Hence, also $J(S_A) = 0$.
- So, S_A and S_B are G-simple and f.d. over \mathcal{K}.
- We have the picture:

\[
\begin{array}{ccc}
U_A & \xrightarrow{\sim} & U_B \\
\downarrow & & \downarrow \\
S_A & \xrightarrow{\sim} & S_B \\
\downarrow & & \downarrow \\
A_{\mathcal{L}_A} & \sim & B_{\mathcal{L}_B}
\end{array}
\]
Finishing the proof

What is left to show is that S_A is a form of A. Since then it follows that A and B are graded forms of each other.
What is left to show is that S_A is a form of A. Since then it follows that A and B are graded forms of each other. For this it is enough to show that the natural map

$$S_A \otimes_K \mathbb{L}_A \rightarrow S_A \cdot \mathbb{L}_A$$

is a graded isomorphism and

$$S_A \cdot \mathbb{L}_A = A_{\mathbb{L}_A}.$$
What is left to show is that S_A is a form of A. Since then it follows that A and B are graded forms of each other.

For this it is enough to show that the natural map

$$S_A \otimes_K \mathbb{L}_A \to S_A \cdot \mathbb{L}_A$$

is a graded isomorphism and

$$S_A \cdot \mathbb{L}_A = A_{\mathbb{L}_A}.$$

The first part follows from the fact that $S_A \otimes_K \mathbb{L}_A$ is G-simple.
Finishing the proof

- What is left to show is that S_A is a form of A. Since then it follows that A and B are graded forms of each other.
- For this it is enough to show that the natural map

$$S_A \otimes_K L_A \to S_A \cdot L_A$$

is a graded isomorphism and

$$S_A \cdot L_A = A_{L_A}.$$

- The first part follows from the fact that $S_A \otimes_K L_A$ is G-simple.
- The second part follows from

$$\dim_{L_A} A_{L_A} = \exp_G(A_{L_A}) = \exp_G(S_A \cdot L_A) = \dim_{L_A} S_A L_A.$$
The End!

Thank you!