Strong Lie derived length of group algebras vs. derived length of their group of units

Tibor Juhász

Institute of Mathematics and Informatics
Eszterházy Károly University
Eger, Hungary

Groups, Rings and the Yang-Baxter equation
Spa, June 18–24, 2017

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ’National Excellence Program’
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and
\[
\begin{align*}
\delta_0(U) &= U \\
\delta_1(U) &= U' = (U, U) \\
\vdots \\
\delta_i(U) &= (\delta_{i-1}(U), \delta_{i-1}(U))
\end{align*}
\]

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $dl(U)$ and called the **derived length** of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called **strongly Lie solvable** if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $dl^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $dl(U) \leq dl^L(R)$.

Tibor Juhász (EKU - Hungary)

Lie derived lengths vs. derived length

Spa, 2017
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

\[
\begin{align*}
\delta_0(U) &= U \\
\delta_1(U) &= U' = (U, U) \\
&\vdots \\
\delta_i(U) &= (\delta_{i-1}(U), \delta_{i-1}(U))
\end{align*}
\]

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $\text{dl}(U)$ and called the **derived length** of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called **strongly Lie solvable** if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $\text{dl}^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $\text{dl}(U) \leq \text{dl}^L(R)$.
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

\[
\begin{align*}
\delta_0(U) &= U \\
\delta_1(U) &= U' = (U, U) \\
&
\end{align*}
\]

\[
\vdots
\]

\[
\delta_i(U) = (\delta_{i-1}(U), \delta_{i-1}(U))
\]

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $dl(U)$ and called the **derived length** of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called **strongly Lie solvable** if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $dl^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $dl(U) \leq dl^L(R)$.

Tibor Juhász (EKU - Hungary)
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

\[
\begin{align*}
\delta_0(U) &= U \\
\delta_1(U) &= U' = (U, U) \\
&\quad \vdots \\
\delta_i(U) &= (\delta_{i-1}(U), \delta_{i-1}(U)) \\
\end{align*}
\]

For $x, y \in R$ set $[x, y] = xy - yx$.

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $\text{dl}(U)$ and called the **derived length** of U.

R is called **strongly Lie solvable** if $\delta^n(R) = 0$ for some n; the smallest such n is denoted by $\text{dl}^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $\text{dl}(U) \leq \text{dl}^L(R)$.
Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

\[
\begin{align*}
\delta_0(U) &= U \\
\delta_1(U) &= U' = (U, U) \\
&\vdots \\
\delta_i(U) &= (\delta_{i-1}(U), \delta_{i-1}(U))
\end{align*}
\]

\[
\begin{align*}
\delta^{(0)}(R) &= R \\
\delta^{(1)}(R) &= [R, R]R \\
&\vdots \\
\delta^{(i)}(R) &= [\delta^{(i-1)}(R), \delta^{(i-1)}(R)]R
\end{align*}
\]

U is said to be \textbf{solvable} if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $dl(U)$ and called the \textbf{derived length} of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called \textbf{strongly Lie solvable} if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $dl^L(R)$ and called the \textbf{strong Lie derived length} of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $dl(U) \leq dl^L(R)$.
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

$$
\delta_0(U) = U \\
\delta_1(U) = U' = (U, U) \\
\vdots \\
\delta_i(U) = (\delta_{i-1}(U), \delta_{i-1}(U)) \\
\delta^{(i)}(R) = [\delta^{(i-1)}(R), \delta^{(i-1)}(R)]R
$$

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $\text{dl}(U)$ and called the **derived length** of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called **strongly Lie solvable** if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $\text{dl}^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $\text{dl}(U) \leq \text{dl}^L(R)$.
Let \(R \) be an associative ring with unity, and \(U := U(R) \) be its group of units, and
\[
\delta_0(U) = U \\
\delta_1(U) = U' = (U, U) \subseteq 1 + \delta^{(1)}(R) \\
\vdots \\
\delta_i(U) = (\delta_{i-1}(U), \delta_{i-1}(U)) \subseteq 1 + \delta^{(i)}(R)
\]

\(U \) is said to be **solvable** if \(\delta_n(U) = 1 \) for some \(n \); the smallest such \(n \) is denoted by \(\text{dl}(U) \) and called the **derived length** of \(U \).

For \(x, y \in R \) set \([x, y] = xy - yx\).

\(R \) is called **strongly Lie solvable** if \(\delta^{(n)}(R) = 0 \) for some \(n \); the smallest such \(n \) is denoted by \(\text{dl}^L(R) \) and called the **strong Lie derived length** of \(R \).

If \(x, y \) are units, then \((x, y) = 1 + x^{-1}y^{-1}[x, y].\)

If \(R \) is strongly Lie solvable, then \(U \) is solvable with \(\text{dl}(U) \leq \text{dl}^L(R) \).
What we want to do

Let R be an associative ring with unity, and $U := U(R)$ be its group of units, and

\[\delta_0(U) = U \]
\[\delta_1(U) = U' = (U, U) \quad \subseteq 1 + \delta^{(1)}(R) \]
\[\vdots \]
\[\delta_i(U) = (\delta_{i-1}(U), \delta_{i-1}(U)) \quad \subseteq 1 + \delta^{(i)}(R) \]

U is said to be **solvable** if $\delta_n(U) = 1$ for some n; the smallest such n is denoted by $\text{dl}(U)$ and called the **derived length** of U.

For $x, y \in R$ set $[x, y] = xy - yx$.

R is called **strongly Lie solvable** if $\delta^{(n)}(R) = 0$ for some n; the smallest such n is denoted by $\text{dl}^L(R)$ and called the **strong Lie derived length** of R.

If x, y are units, then $(x, y) = 1 + x^{-1}y^{-1}[x, y]$.

If R is strongly Lie solvable, then U is solvable with $\text{dl}(U) \leq \text{dl}^L(R)$.
A third series

Let $\delta^0(R) = R$, and for $i \geq 1$, let $\delta^i(R)$ be the additive subgroup of R generated by all Lie commutators $[x, y]$ with $x, y \in \delta^{i-1}(R)$.

R is called \textbf{Lie solvable} if $\delta^n(R) = 0$ for some n; the smallest such n is denoted by $dl_L(R)$ and called the \textbf{Lie derived length} of R.

If R is strongly Lie solvable, then R is Lie solvable with $dl_L(R) \leq dl^L(R)$.

Whether is there any relation between $dl(U)$ and $dl_L(R)$?
Let $\delta^0(R) = R$, and for $i \geq 1$, let $\delta^i(R)$ be the additive subgroup of R generated by all Lie commutators $[x, y]$ with $x, y \in \delta^{i-1}(R)$.

R is called **Lie solvable** if $\delta^n(R) = 0$ for some n; the smallest such n is denoted by $dl_L(R)$ and called the **Lie derived length** of R.

If R is strongly Lie solvable, then R is Lie solvable with $dl_L(R) \leq dl^L(R)$.

Whether is there any relation between $dl(U)$ and $dl_L(R)$?
A third series

Let \(\delta[0](R) = R \), and for \(i \geq 1 \), let \(\delta[i](R) \) be the additive subgroup of \(R \) generated by all Lie commutators \([x, y]\) with \(x, y \in \delta[i-1](R) \).

\(R \) is called **Lie solvable** if \(\delta[n](R) = 0 \) for some \(n \); the smallest such \(n \) is denoted by \(dl_L(R) \) and called the **Lie derived length** of \(R \).

If \(R \) is strongly Lie solvable, then \(R \) is Lie solvable with \(dl_L(R) \leq dl^L(R) \).

Whether is there any relation between \(dl(U) \) and \(dl_L(R) \)?
Let $\delta^0(R) = R$, and for $i \geq 1$, let $\delta^i(R)$ be the additive subgroup of R generated by all Lie commutators $[x, y]$ with $x, y \in \delta^{i-1}(R)$.

R is called **Lie solvable** if $\delta^n(R) = 0$ for some n; the smallest such n is denoted by $dl_L(R)$ and called the **Lie derived length** of R.

If R is strongly Lie solvable, then R is Lie solvable with $dl_L(R) \leq dl^L(R)$.

Whether is there any relation between $dl(U)$ and $dl_L(R)$?
Strongly Lie solvable group algebras

Write FG for the group algebra (or group ring) of a group G over a field F.

Passi-Passman-Sehgal, 1973:
FG is strongly Lie solvable iff either G is abelian, or char $F = p$ and G' is a finite p-group.

Classification of group algebras with solvable group of units

Bovdi, 2005:
Let char$(F) = p > 3$ and G be a group with a nontrivial p-Sylow subgroup P such that if G is non-torsion, then P is infinite. Then $U(FG)$ is a solvable iff FG is strongly Lie solvable.

In the sequel we suppose that FG is strongly Lie solvable.
Then $dl_L(FG) \leq dl^L(FG)$ and $dl(U(FG)) \leq dl^L(FG)$.
Strongly Lie solvable group algebras

Write FG for the group algebra (or group ring) of a group G over a field F.

Passi-Passman-Sehgal, 1973:
FG is strongly Lie solvable iff either G is abelian, or char $F = p$ and G' is a finite p-group.

Classification of group algebras with solvable group of units

Bovdi, 2005:
Let char(F) = $p > 3$ and G be a group with a nontrivial p-Sylow subgroup P such that if G is non-torsion, then P is infinite. Then $U(FG)$ is a solvable iff FG is strongly Lie solvable.

In the sequel we suppose that FG is strongly Lie solvable. Then $\text{dl}_L(FG) \leq \text{dl}_L^L(FG)$ and $\text{dl}(U(FG)) \leq \text{dl}_L^L(FG)$.
Strongly Lie solvable group algebras

Write FG for the group algebra (or group ring) of a group G over a field F.

Passi-Passman-Sehgal, 1973:
FG is strongly Lie solvable iff either G is abelian, or char $F = p$ and G' is a finite p-group.

Classification of group algebras with solvable group of units

Bovdi, 2005:
Let char(F) = $p > 3$ and G be a group with a nontrivial p-Sylow subgroup P such that if G is non-torsion, then P is infinite. Then $U(FG)$ is a solvable iff FG is strongly Lie solvable.

In the sequel we suppose that FG is strongly Lie solvable. Then $dl_L(FG) \leq dl^L(FG)$ and $dl(U(FG)) \leq dl^L(FG)$.
Strongly Lie solvable group algebras

Write FG for the group algebra (or group ring) of a group G over a field F.

Passi-Passman-Sehgal, 1973:
FG is strongly Lie solvable iff either G is abelian, or char $F = p$ and G' is a finite p-group.

Classification of group algebras with solvable group of units

Bovdi, 2005:
Let char(F) = $p > 3$ and G be a group with a nontrivial p-Sylow subgroup P such that if G is non-torsion, then P is infinite. Then $U(FG)$ is a solvable iff FG is strongly Lie solvable.

In the sequel we suppose that FG is strongly Lie solvable.
Then $dl_L(FG) \leq dl^L(FG)$ and $dl(U(FG)) \leq dl^L(FG)$.
When the derived length is at most 2

Levin-Rosenberger, 1986:
FG is (strongly) Lie metabelian iff one of the following conditions holds:
- G is abelian;
- $\text{char}(F) = 3$, and G' is central of order 3;
- $\text{char}(F) = 2$, and G' is central elementary abelian of order dividing 4.

Shalev, 1991:
Let $\text{char}(F) > 2$ and G be a group. $U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.

Kurdics, 1996; Coleman-Sandling, 1998:
Let $\text{char}(F) = 2$ and G be a nilpotent group. $U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.
When the derived length is at most 2

Levin-Rosenberger, 1986:
FG is (strongly) Lie metabelian iff one of the following conditions holds:
- G is abelian;
- $\text{char}(F) = 3$, and G' is central of order 3;
- $\text{char}(F) = 2$, and G' is central elementary abelian of order dividing 4.

Shalev, 1991:
Let $\text{char}(F) > 2$ and G be a finite group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.

Kurdics, 1996; Coleman-Sandling, 1998:
Let $\text{char}(F) = 2$ and G be a nilpotent group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.
When the derived length is at most 2

Levin-Rosenberger, 1986:
FG is (strongly) Lie metabelian iff one of the following conditions holds:

- G is abelian;
- $\text{char}(F) = 3$, and G' is central of order 3;
- $\text{char}(F) = 2$, and G' is central elementary abelian of order dividing 4.

Shalev, 1991:
Let $\text{char}(F) > 2$ and G be a finite group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.

Kurdics, 1996; Coleman-Sandling, 1998:
Let $\text{char}(F) = 2$ and G be a finite and nilpotent group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.
When the derived length is at most 2

Levin-Rosenberger, 1986:

FG is (strongly) Lie metabelian iff one of the following conditions holds:

- G is abelian;
- $\text{char}(F) = 3$, and G' is central of order 3;
- $\text{char}(F) = 2$, and G' is central elementary abelian of order dividing 4.

Shalev, 1991:

Let $\text{char}(F) > 2$ and G be a finite group.

$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.

Kurdics, 1996; Coleman-Sandling, 1998:

Let $\text{char}(F) = 2$ and G be a finite and nilpotent group.

$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian. (Exception for non-nilpotent G.)
When the derived length is at most 2

Levin-Rosenberger, 1986:
FG is (strongly) Lie metabelian iff one of the following conditions holds:
- G is abelian;
- $\text{char}(F) = 3$, and G' is central of order 3;
- $\text{char}(F) = 2$, and G' is central elementary abelian of order dividing 4.

Catino-Spinelli, 2010:
Let $\text{char}(F) > 2$ and G be a torsion group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.

Catino-Spinelli, 2010:
Let $\text{char}(F) = 2$ and G be a torsion and nilpotent group.
$U(FG)$ is metabelian iff FG is (strongly) Lie metabelian.
The derived length of the group of units

Baginski, 2002:
If $\text{char}(F) = p > 2$, and G is a finite p-group with cyclic commutator subgroup, then

$$\text{dl}(U(FG)) = \lceil \log_2(|G'| + 1) \rceil.$$

Questions:
- What happens if G is not a finite p-group?
- What happens for $p = 2$?
- How much is $\text{dl}^L(FG)$ in these cases?
The derived length of the group of units

Baginski, 2002:
If char$(F) = p > 2$, and G is a finite p-group with cyclic commutator subgroup, then
\[dl(U(FG)) = \lceil \log_2(|G'| + 1) \rceil. \]

Questions:
- What happens if G is not a finite p-group?
- What happens for $p = 2$?
- How much is $dl^L(FG)$ in these cases?
Theorem (Balogh-J, 2008)

Let FG be a (strongly) Lie solvable group algebra. If G' is cyclic of order p^n, where $p > 2$, and $G/C_G(G')$ has order $2^m p^r s$, where $(2p, s) = 1$, then

$$dl_L(FG) = dl^L(FG) = \lceil \log_2 2p^n \nu_m \rceil,$$

where $\nu_m = 1$ if $s > 1$, otherwise $\nu_m = 1 - \frac{1}{2^{m+1}}$.

G is nilpotent \Rightarrow $G/C_G(G')$ is a p-group \Rightarrow $m = 0, s = 1$ \Rightarrow $\nu_0 = 1/2$ \Rightarrow

$$dl_L(FG) = dl^L(FG) = \lceil \log_2 p^n \rceil = \lceil \log_2 (p^n + 1) \rceil = \lceil \log_2 (|G'| + 1) \rceil$$
Theorem (Balogh-J, 2008)

Let FG be a (strongly) Lie solvable group algebra. If G' is cyclic of order p^n, where $p > 2$, and $G/C_G(G')$ has order $2^m p^r s$, where $(2p, s) = 1$, then

$$dl_L(FG) = dl_L(FG) = \lceil \log_2 2p^n \nu_m \rceil,$$

where $\nu_m = 1$ if $s > 1$, otherwise $\nu_m = 1 - \frac{1}{2m+1}$.

G is nilpotent \Rightarrow $G/C_G(G')$ is a p-group \Rightarrow $m = 0$, $s = 1$ \Rightarrow $\nu_0 = 1/2$ $\Rightarrow$$$

$$dl_L(FG) = dl_L(FG) = \lceil \log_2 p^n \rceil = \lceil \log_2(p^n + 1) \rceil = \lceil \log_2(|G'| + 1) \rceil.$$
The derived length of the group of units

Corollary

If \(\text{char}(F) = p > 2 \), and \(G \) is a finite \(p \)-group with cyclic commutator subgroup, then

\[
dl(U(FG)) = dl_L(FG) = dl^L(FG) = \lceil \log_2(|G'| + 1) \rceil
\]

Balogh-Li, 2007:

If \(G \) is torsion, or non-nilpotent, and \(G' \) is a cyclic \(p \)-group, then

\[
dl(U(FG)) = dl_L(FG) = dl^L(FG).
\]

Theorem (J, 2016)

\(dl(U(FG)) \) does not always equal to \(dl^L(FG) \) for nilpotent and non-torsion \(G \).
The derived length of the group of units

Corollary

If char(F) = $p > 2$, and G is a finite p-group with cyclic commutator subgroup, then

\[\text{dl}(U(FG)) = \text{dl}_L(FG) = \text{dl}^L(FG) = \lceil \log_2(|G'| + 1) \rceil \]

Balogh-Li, 2007:
If G is torsion, or non-nilpotent, and G' is a cyclic p-group, then

\[\text{dl}(U(FG)) = \text{dl}_L(FG) = \text{dl}^L(FG). \]

Theorem (J, 2016)

\[\text{dl}(U(FG)) \text{ does not always equal to } \text{dl}^L(FG) \text{ for nilpotent and non-torsion } G. \]
The derived length of the group of units

Corollary

If $\text{char}(F) = p > 2$, and G is a finite p-group with cyclic commutator subgroup, then

$$\text{dl}(U(FG)) = \text{dl}_L(FG) = \text{dl}^L(FG) = \lceil \log_2(|G'| + 1) \rceil$$

Balogh-Li, 2007:

If G is torsion, or non-nilpotent, and G' is a cyclic p-group, then

$$\text{dl}(U(FG)) = \text{dl}_L(FG) = \text{dl}^L(FG).$$

Theorem (J, 2016)

$\text{dl}(U(FG))$ does not always equal to $\text{dl}^L(FG)$ for nilpotent and non-torsion G.
When the derived length may be smaller

Theorem (J, 2016)

Let G be a nilpotent group whose commutator subgroup is finite abelian, and let $\text{char}(F) = p > 2$. If $G' = \text{Syl}_p(G)$, and $\gamma_3(G) \subseteq (G')^p$, then

$$\text{dl}(U(FG)) \leq \left\lceil \log_2 \left(\frac{2}{3} \left(t(G') + 1\right) \right) \right\rceil.$$

Furthermore, if G' is cyclic, then the equality holds.

Theorem (J, 2006)

Let G be a nilpotent group with G' a finite p-group, and let $\text{char}(F) = p$. If $\gamma_3(G) \subseteq (G')^p$, then $\text{dl}^L(FG) = \lceil \log_2(t(G') + 1) \rceil$.

Tibor Juhász (EKU - Hungary)
When the derived length may be smaller

Theorem (J, 2016)

Let G be a nilpotent group whose commutator subgroup is finite abelian, and let $\text{char}(F) = p > 2$. If $G' = \text{Syl}_p(G)$, and $\gamma_3(G) \subseteq (G')^p$, then

\[
\text{dl}(U(FG)) \leq \left\lceil \log_2 \left(\frac{2}{3} \left(t(G') + 1 \right) \right) \right\rceil.
\]

Furthermore, if G' is cyclic, then the equality holds.

Theorem (J, 2006)

Let G be a nilpotent group with G' a finite p-group, and let $\text{char}(F) = p$. If $\gamma_3(G) \subseteq (G')^p$, then $\text{dl}^L(FG) = \lceil \log_2 (t(G') + 1) \rceil$.

Tibor Juhász (EKU - Hungary)
Lie derived lengths vs. derived length
Spa, 2017
When the derived length may be smaller

Theorem (J, 2016)

Let G be a nilpotent group whose commutator subgroup is finite abelian, and let $\text{char}(F) = p > 2$. If $G' = \text{Syl}_p(G)$, and $\gamma_3(G) \subseteq (G')^p$, then

$$\text{dl}(U(FG)) \leq \left\lceil \log_2 \left(\frac{2}{3} (t(G') + 1) \right) \right\rceil.$$

Furthermore, if G' is cyclic, then the equality holds.

Theorem (J, 2006)

Let G be a nilpotent group with G' a finite p-group, and let $\text{char}(F) = p$. If $\gamma_3(G) \subseteq (G')^p$, then $\text{dl}^L(FG) = \lceil \log_2(t(G') + 1) \rceil$.
Examples

Example

Let

\[G = \langle a, b, c \mid c^5 = 1, b^{-1}ab = ac, ac = ca, bc = cb \rangle, \]

and \(\text{char}(F) = 5 \). Then \(\text{dl}(U(FG)) = 2 \), but \(\text{dl}_L(FG) = \text{dl}^L(FG) = 3 \).

Example

Let \(G' = \text{Syl}_3(G) \cong C_3 \times C_3 \), \(G' \) is central, and let \(\text{char}(F) = 3 \). Then \(\text{dl}(U(FG)) = 2 \), but \(\text{dl}_L(FG) = \text{dl}^L(FG) = 3 \).

Corollary

\(U(FG) \) can be metabelian, even if \(FG \) is strongly Lie solvable, but not (strongly) Lie metabelian.
Open question

We still don’t know $\text{dl}(U(FG))$ when G is nilpotent, non-torsion, and G' is cyclic p-group ($p = \text{char}(F)$ is odd), but $G' \neq \text{Syl}_p(G)$. All we can say about it at present is

$$\left\lceil \log_2 \left(\frac{2}{3} (|G'| + 1) \right) \right\rceil \leq \text{dl}(U(FG)) \leq \left\lceil \log_2 (|G'| + 1) \right\rceil.$$
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|---------|-------------|-------------|---------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | | | |
| 2^5 | 2^3 | | | |
| 2^6 | 2^4 | | | |
| 2^7 | 2^5 | | | |
| 2^8 | 2^6 | | | |
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|---------|--------------|--------------|---------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 2 | 2 | 2 |
| 2^5 | 2^3 | 2 | 2 | 2 |
| 2^6 | 2^4 | 2 | 2 | 2 |
| 2^7 | 2^5 | 2 | 2 | 2 |
| 2^8 | 2^6 | 2 | 2 | 2 |

Konovalov, Rossmanith, . . .:

If $\text{char}(F) = 2$ and G has an abelian subgroup of index 2, then $dl_L(FG) \leq 3$.
The case \(p = 2 \)

Write \(D_k \) for the dihedral group of order \(k \), and \(F \) for a field of characteristic 2.

| \(k \) | \(|D'_k| \) | \(dl_L(FD_k) \) | \(dl^L(FD_k) \) | \(dl(U(FD_k)) \) |
|-------|-----------|----------------|----------------|----------------|
| \(2^3 \) | \(2^1 \) | 2 | 2 | 2 |
| \(2^4 \) | \(2^2 \) | 3 | | |
| \(2^5 \) | \(2^3 \) | 3 | | |
| \(2^6 \) | \(2^4 \) | 3 | | |
| \(2^7 \) | \(2^5 \) | 3 | | |
| \(2^8 \) | \(2^6 \) | 3 | | |

Konovalov, Rossmanith, . . . :

If \(\text{char}(F) = 2 \) and \(G \) has an abelian subgroup of index 2, then \(dl_L(FG) \leq 3 \).
The case \(p = 2 \)

Write \(D_k \) for the dihedral group of order \(k \), and \(F \) for a field of characteristic 2.

| \(k \) | \(|D'_k| \) | \(dl_L(FD_k) \) | \(dl^L(FD_k) \) | \(dl(U(FD_k)) \) |
|---|---|---|---|---|
| \(2^3 \) | \(2^1 \) | 2 | 2 | 2 |
| \(2^4 \) | \(2^2 \) | 3 | | |
| \(2^5 \) | \(2^3 \) | 3 | | |
| \(2^6 \) | \(2^4 \) | 3 | | |
| \(2^7 \) | \(2^5 \) | 3 | | |
| \(2^8 \) | \(2^6 \) | 3 | | |

Theorem (J, 2006)

Let \(G \) be a nilpotent group with \(G' \) a finite \(p \)-group, and let \(\text{char}(F) = p \). If \(\gamma_3(G) \subseteq (G')^p \), then \(dl^L(FG) = \lceil \log_2(t(G') + 1) \rceil \).
The case \(p = 2 \)

Write \(D_k \) for the dihedral group of order \(k \), and \(F \) for a field of characteristic 2.

\[
\begin{array}{|c|c|c|c|c|}
\hline
k & |D'_k| & \text{dl}_L(FD_k) & \text{dl}^L(FD_k) & \text{dl}(U(FD_k)) \\
\hline
2^3 & 2^1 & 2 & 2 & 2 \\
2^4 & 2^2 & 3 & 3 & \\
2^5 & 2^3 & 3 & 4 & \\
2^6 & 2^4 & 3 & 5 & \\
2^7 & 2^5 & 3 & 6 & \\
2^8 & 2^6 & 3 & 7 & \\
\hline
\end{array}
\]

Theorem (J, 2006)

Let \(G \) be a nilpotent group with \(G' \) a finite \(p \)-group, and let \(\text{char}(F) = p \). If \(\gamma_3(G) \subseteq (G')^p \), then \(\text{dl}^L(FG) = \lceil \log_2(t(G') + 1) \rceil \).
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|---------|-------------|-------------|----------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | |
| 2^5 | 2^3 | 3 | 4 | |
| 2^6 | 2^4 | 3 | 5 | |
| 2^7 | 2^5 | 3 | 6 | |
| 2^8 | 2^6 | 3 | 7 | |

Let’s play!
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|---------|---------------|---------------|---------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | 3 |
| 2^5 | 2^3 | 3 | 4 | |
| 2^6 | 2^4 | 3 | 5 | |
| 2^7 | 2^5 | 3 | 6 | |
| 2^8 | 2^6 | 3 | 7 | |

Let’s play!
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|---------|-------------|-------------|--------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | 3 |
| 2^5 | 2^3 | 3 | 4 | 4 |
| 2^6 | 2^4 | 3 | 5 | |
| 2^7 | 2^5 | 3 | 6 | |
| 2^8 | 2^6 | 3 | 7 | |

Let’s play!
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $\text{dl}_L(FD_k)$ | $\text{dl}^L(FD_k)$ | $\text{dl}(U(FD_k))$ |
|------|----------|----------------------|---------------------|---------------------|
| 2^3| 2^1 | 2 | 2 | 2 |
| 2^4| 2^2 | 3 | 3 | 3 |
| 2^5| 2^3 | 3 | 4 | 4 |
| 2^6| 2^4 | 3 | 5 | 4 |
| 2^7| 2^5 | 3 | 6 | |
| 2^8| 2^6 | 3 | 7 | |

Let’s play!
The case \(p = 2 \)

Write \(D_k \) for the dihedral group of order \(k \), and \(F \) for a field of characteristic 2.

| \(k \) | \(|D'_k| \) | \(\text{dl}_L(FD_k) \) | \(\text{dl}^*(FD_k) \) | \(\text{dl}(U(FD_k)) \) |
|---|---|---|---|---|
| \(2^3 \) | \(2^1 \) | 2 | 2 | 2 |
| \(2^4 \) | \(2^2 \) | 3 | 3 | 3 |
| \(2^5 \) | \(2^3 \) | 3 | 4 | 4 |
| \(2^6 \) | \(2^4 \) | 3 | 5 | 4 |
| \(2^7 \) | \(2^5 \) | 3 | 6 | 5 |
| \(2^8 \) | \(2^6 \) | 3 | 7 | |
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|-----|----------|--------------|--------------|----------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | 3 |
| 2^5 | 2^3 | 3 | 4 | 4 |
| 2^6 | 2^4 | 3 | 5 | 4 |
| 2^7 | 2^5 | 3 | 6 | 5 |
| 2^8 | 2^6 | 3 | 7 | 6 |

Let’s play!
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|------|----------|---------------|--------------|----------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | 3 |
| 2^5 | 2^3 | 3 | 4 | 4 |
| 2^6 | 2^4 | 3 | 5 | 4 |
| 2^7 | 2^5 | 3 | 6 | 5 |
| 2^8 | 2^6 | 3 | 7 | 6 |

Theorem (J-Kurdics, 2017)

Let $\text{char}(F) = 2$, and let G be a group with cyclic commutator subgroup of order 2^n, and assume that $\text{cl}(G) = n + 1$. Then, for $n \geq 4$, we have $dl(U(FG)) < dl^L(FG) = n + 1$.
The case $p = 2$

Write D_k for the dihedral group of order k, and F for a field of characteristic 2.

| k | $|D'_k|$ | $dl_L(FD_k)$ | $dl^L(FD_k)$ | $dl(U(FD_k))$ |
|------|----------|--------------|--------------|---------------|
| 2^3 | 2^1 | 2 | 2 | 2 |
| 2^4 | 2^2 | 3 | 3 | 3 |
| 2^5 | 2^3 | 3 | 4 | 4 |
| 2^6 | 2^4 | 3 | 5 | 4 |
| 2^7 | 2^5 | 3 | 6 | 5 |
| 2^8 | 2^6 | 3 | 7 | 6 |

Theorem (J-Kurdics, 2017)

Let $\text{char}(F) = 2$, and let G be a group with cyclic commutator subgroup of order 2^n, and assume that $\text{cl}(G) = n + 1$. Then, for $n \geq 4$, we have $\text{dl}(U(FG)) < \text{dl}^L(FG) = n + 1$.

Tibor Juhász (EKU - Hungary)

Lie derived lengths vs. derived length

Spa, 2017 12 / 14
The case $p = 2$

Theorem (J, 2016)

Let $\text{char}(F) = 2$, and let G be a group with cyclic commutator subgroup of order 2^n, where $n > 1$, and assume that $\text{cl}(G) \leq n$. Then either

$$\text{dl}(U(FG)) = \text{dl}^L(FG) = n + 1,$$

or

$$\text{dl}(U(FG)) = \text{dl}^L(FG) - 1 = n.$$

Furthermore, if $G' = \text{Syl}_2(G)$, then $\text{dl}(U(FG)) = n < \text{dl}^L(FG)$.

Corollary

For non-torsion G, $U(FG)$ can be metabelian, even if G' is cyclic of order 4, that is when FG is strongly Lie solvable, but not (strongly) Lie metabelian.
The case $p = 2$

Theorem (J, 2016)

Let $\text{char}(F) = 2$, and let G be a group with cyclic commutator subgroup of order 2^n, where $n > 1$, and assume that $\text{cl}(G) \leq n$. Then either

$$\text{dl}(U(FG)) = \text{dl}^L(FG) = n + 1,$$

or

$$\text{dl}(U(FG)) = \text{dl}^L(FG) - 1 = n.$$

Furthermore, if $G' = \text{Syl}_2(G)$, then $\text{dl}(U(FG)) = n < \text{dl}^L(FG)$.

Corollary

For non-torsion G, $U(FG)$ can be metabelian, even if G' is cyclic of order 4, that is when FG is strongly Lie solvable, but not (strongly) Lie metabelian.
The case $p = 2$

Theorem (J, 2016)

Let $\text{char}(F) = 2$, and let G be a group with cyclic commutator subgroup of order 2^n, where $n > 1$, and assume that $\text{cl}(G) \leq n$. Then either

$$\text{dl}(U(FG)) = \text{dl}^L(FG) = n + 1,$$

or

$$\text{dl}(U(FG)) = \text{dl}^L(FG) - 1 = n.$$

Furthermore, if $G' = \text{Syl}_2(G)$, then $\text{dl}(U(FG)) = n < \text{dl}^L(FG)$.

Corollary

For non-torsion G, $U(FG)$ can be metabelian, even if G' is cyclic of order 4, that is when FG is strongly Lie solvable, but not (strongly) Lie metabelian.
ENGLISH IS IMPORTANT
BUT
MATH IS IMPORTANTER