Braces over a field and regular subgroups of the affine group

Francesco Catino

Università del Salento

Groups, Rings and the Yang-Baxter equation
Spa - June 23rd, 2017
The aim of the talk

The aim of this talk is to introduce the relation between these topics: braces over a field \(F \), regular subgroups of an affine group \(\text{AGL}(V) \).

Moreover, I introduce:
- recent constructions of braces over a field,
- some open problems.
The aim of this talk is to introduce the relation between these topics:
The aim of this talk is to introduce the relation between these topics:

- braces over a field F,

Francesco Catino - Braces and regular subgroups
The aim of this talk is to introduce the relation between these topics:

- braces over a field F,
- regular subgroups of an affine group $AGL(V)$.
The aim of this talk is to introduce the relation between these topics:

- braces over a field F,
- regular subgroups of an affine group $AGL(V)$.

Moreover, I introduce:
The aim of this talk is to introduce the relation between these topics:

- braces over a field F,
- regular subgroups of an affine group $AGL(V)$.

Moreover, I introduce:

- recent constructions of braces over a field,
The aim of this talk is to introduce the relation between these topics:

- braces over a field F,
- regular subgroups of an affine group $AGL(V)$.

Moreover, I introduce:

- recent constructions of braces over a field,
- some open problems.
Braces over a field

Definition

Let V be a vector space over a field F and let $·$ be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) · w = u · w + v · w$,
2. $u · (v + w + v · w) = u · v + u · w + (u · v) · w$,
3. $\gamma_u: V \rightarrow V, \quad v \mapsto v · u + v$ is bijective,
4. $\mu(u · v) = (\mu u) · v$,

hold for all $u, v, w \in V$ and $\mu \in F$.

Right braces over F have been introduced by Rizzo and me in (Bull. Austr. Math. Soc., 2009), where we call them circle algebras, referring to Jacobson's circle operation. The current terminology has been suggested by Rump (Note Mat., 2014).
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V.

Let V be a vector space over a field F and let \cdot be an operation on V.

Francesco Catino - Braces and regular subgroups

Francesco Catino - Braces and regular subgroups
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w$,
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w$,
3. $\gamma : V \to V, v \mapsto v \cdot u + v$ is bijective,
4. $\mu((u \cdot v)) = (\mu u) \cdot v$,

hold for all $u, v, w \in V$ and $\mu \in F$. Right braces over F have been introduced by Rizzo and me in ([Bull. Austr. Math. Soc., 2009]), where we call them circle algebras, referring to Jacobson’s circle operation. The current terminology has been suggested by Rump ([Note Mat., 2014]).
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w,$
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w,$
3. $\gamma_u : V \to V, v \mapsto v \cdot u + v$ is bijective,
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w$,
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w$,
3. $\gamma_u : V \rightarrow V, v \mapsto v \cdot u + v$ is bijective,
4. $\mu(u \cdot v) = (\mu u) \cdot v$,

hold for all $u, v, w \in V$ and $\mu \in F$.
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w$,
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w$,
3. $\gamma_u : V \to V, v \mapsto v \cdot u + v$ is bijective,
4. $\mu(u \cdot v) = (\mu u) \cdot v$,

hold for all $u, v, w \in V$ and $\mu \in F$.

Right braces over F have been introduced by Rizzo and me in (Bull. Austr. Math. Soc., 2009),
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w$,
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w$,
3. $\gamma_u : V \rightarrow V$, $v \mapsto v \cdot u + v$ is bijective,
4. $\mu(u \cdot v) = (\mu u) \cdot v$,

hold for all $u, v, w \in V$ and $\mu \in F$.

Right braces over F have been introduced by Rizzo and me in (Bull. Austr. Math. Soc., 2009), where we call them circle algebras, referring to Jacobson’s circle operation.
Braces over a field

Definition

Let V be a vector space over a field F and let \cdot be an operation on V. We say that V is a right brace over F or right F-brace if

1. $(u + v) \cdot w = u \cdot w + v \cdot w$,
2. $u \cdot (v + w + v \cdot w) = u \cdot v + u \cdot w + (u \cdot v) \cdot w$,
3. $\gamma_u : V \rightarrow V, v \mapsto v \cdot u + v$ is bijective,
4. $\mu(u \cdot v) = (\mu u) \cdot v$,

hold for all $u, v, w \in V$ and $\mu \in F$.

Right braces over F have been introduced by Rizzo and me in (Bull. Austr. Math. Soc., 2009), where we call them circle algebras, referring to Jacobson’s circle operation.

The current terminology has been suggested by Rump (Note Mat., 2014).
An alternative definition

Cedó, Jespers, Okniński (Commun. Math. Phys., 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (J. Algebra, 2016) have given the following alternative definition of right brace over \mathbb{F}.

Definition

Let V be a vector space over a field \mathbb{F} and let \circ be an operation on V. We say that V is a right brace over \mathbb{F} or a right \mathbb{F}-brace if

1. (V, \circ) is a group,
2. $(u + v) \circ w + w = u \circ w + v \circ w$,
3. $\mu (u \circ v) = (\mu u) \circ v + (\mu - 1)v$,

hold for all $u, v, w \in V$ and $\mu \in \mathbb{F}$.

It is easy to see that it is equivalent to the original one, considering the Jacobson’s circle operation $u \circ v := u + v + u \cdot v$, for all $u, v \in V$.

Francesco Catino - Braces and regular subgroups 3/32
Cedó, Jespers, Okniński (*Commun. Math. Phys.*, 2014) introduced an alternative definition of a right brace and,
Cédo, Jespers, Okniński (Commun. Math. Phys., 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (J. Algebra, 2016) have given the following alternative definition of right brace over F.

Definition

Let V be a vector space over a field F and let \circ be an operation on V. We say that V is a right brace over F or a right F-brace if

1. (V, \circ) is a group,
2. $(u + v) \circ w + w = u \circ w + v \circ w$, and
3. $\mu (u \circ v) = (\mu u) \circ v + (\mu - 1)v$,

hold for all $u, v, w \in V$ and $\mu \in F$. It is easy to see that it is equivalent to the original one, considering the Jacobson’s circle operation $u \circ v := u + v + u \cdot v$, for all $u, v \in V$.
Cedo, Jespers, Okniński (*Commun. Math. Phys.*, 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (*J. Algebra*, 2016) have given the following alternative definition of right brace over F.

Definition

Let V be a vector space over a field F and let \circ be an operation on V.
Cedó, Jespers, Okniński (*Commun. Math. Phys.*, 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (*J. Algebra*, 2016) have given the following alternative definition of right brace over F.

Definition

Let V be a vector space over a field F and let \circ be an operation on V. We say that V is a right brace over F or a right F-brace if

1. (V, \circ) is a group,
2. $(u + v) \circ w + w = u \circ w + v \circ w$,
Cedó, Jespers, Okniński (Commun. Math. Phys., 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (J. Algebra, 2016) have given the following alternative definition of right brace over F.

Definition

Let V be a vector space over a field F and let \circ be an operation on V. We say that V is a right brace over F or a right F-brace if

1. (V, \circ) is a group,
2. $(u + v) \circ w + w = u \circ w + v \circ w$,
3. $\mu(u \circ v) = (\mu u) \circ v + (\mu - 1)v$,

hold for all $u, v, w \in V$ and $\mu \in F$.
Cedó, Jespers, Okniński (Commun. Math. Phys., 2014) introduced an alternative definition of a right brace and, following this, Colazzo, Stefanelli and I (J. Algebra, 2016) have given the following alternative definition of right brace over F.

Definition

Let V be a vector space over a field F and let \circ be an operation on V. We say that V is a right brace over F or a right F-brace if

1. (V, \circ) is a group,
2. $(u + v) \circ w + w = u \circ w + v \circ w$,
3. $\mu(u \circ v) = (\mu u) \circ v + (\mu - 1)v$,

hold for all $u, v, w \in V$ and $\mu \in F$.

It is easy to see that it is equivalent to the original one, considering the Jacobson's circle operation $u \circ v := u + v + u \cdot v$, for all $u, v \in V$.
Examples

Example
A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally
Example
Any radical algebra V over a field F is a right F-brace (and a left F-brace).

Definition
A vector space V over a field F with an operation \circ is called left F-brace if

1. (V, \circ) is a group,
2. $u \circ (v + w) + u = u \circ v + u \circ w$,
3. $\mu (u \circ v) = u \circ (\mu v) + (\mu - 1)u$,

hold for all $u, v, w \in V$ and $\mu \in F$.

Francesco Catino - Braces and regular subgroups 4/32
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace.
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally

Example

Any radical algebra V over a field F is a right F-brace
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally

Example

Any radical algebra V over a field F is a right F-brace (and a left F-brace).
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally

Example

Any radical algebra V over a field F is a right F-brace (and a left F-brace).

Definition

A vector space V over a field F with an operation \circ
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally

Example

Any radical algebra V over a field F is a right F-brace (and a left F-brace).

Definition

A vector space V over a field F with an operation \circ is called left F-brace if

1. (V, \circ) is a group,
2. $u \circ (v + w) + u = u \circ v + u \circ w$,
Examples

Example

A vector space V over a field F with $u \circ v := u + v$, for all $u, v \in V$, is a right F-brace. We call this a zero right F-brace.

More generally

Example

Any radical algebra V over a field F is a right F-brace (and a left F-brace).

Definition

A vector space V over a field F with an operation \circ is called left F-brace if

1. (V, \circ) is a group,
2. $u \circ (v + w) + u = u \circ v + u \circ w$,
3. $\mu(u \circ v) = u \circ (\mu v) + (\mu - 1)u$,

hold for all $u, v, w \in V$ and $\mu \in F$.
Low dimensional cases

The unique right brace over \mathbb{F}_q of dimension 1 is the field \mathbb{F}_q as vector space with $u \circ v := u + v$, for all $u, v \in \mathbb{F}_q$. The description is more complicated just for dimension 2.

Example
Let \mathbb{F} be a field, and let ϵ a homomorphism from the additive group of \mathbb{F} to the multiplicative one. On vector space $V := \mathbb{F} \times \mathbb{F}$ we define the operation given by $(u_1, u_2) \circ (v_1, v_2) := (u_1(\epsilon(v_2)) + v_1, u_2 + v_2)$ for all $u_1, u_2, v_1, v_2 \in \mathbb{F}$. Then V is a right brace over \mathbb{F}.
Low dimensional cases

The unique right brace over F of dimension 1
Low dimensional cases

The **unique** right brace over F of **dimension 1** is the field F as vector space with

$$u \circ v := u + v,$$

for all $u, v \in F$.

Francesco Catino - Braces and regular subgroups
The unique right brace over F of dimension 1 is the field F as vector space with

$$u \circ v := u + v,$$

for all $u, v \in F$.

The description is more complicated just for dimension 2.
The unique right brace over F of dimension 1 is the field F as vector space with

$$u \circ v := u + v,$$

for all $u, v \in F$.

The description is more complicated just for dimension 2.

Example
The unique right brace over F of dimension 1 is the field F as vector space with

$$u \circ v := u + v,$$

for all $u, v \in F$.

The description is more complicated just for dimension 2.

Example

Let F be a field, and let ϵ a homomorphism from the additive group of F to the multiplicative one.
The unique right brace over F of dimension 1 is the field F as vector space with

\[u \circ v := u + v, \]

for all $u, v \in F$.

The description is more complicated just for dimension 2.

Example

Let F be a field, and let ϵ a homomorphism from the additive group of F to the multiplicative one.

On vector space $V := F \times F$ we define the operation given by

\[
(u_1, u_2) \circ (v_1, v_2) := (u_1(v_2 \epsilon) + v_1, u_2 + v_2)
\]

for all $u_1, u_2, v_1, v_2 \in F$.

The unique right brace over F of dimension 1 is the field F as vector space with

$$u \circ v := u + v,$$

for all $u, v \in F$.

The description is more complicated just for dimension 2.

Example

Let F be a field, and let ϵ a homomorphism from the additive group of F to the multiplicative one.

On vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1(v_2\epsilon) + v_1, u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a right brace over F.
The field of real numbers

Proposition

A homomorphism \(\epsilon \) from the additive group of \(\mathbb{R} \) to the multiplicative one is a function of this kind
\[
\epsilon : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto e(f(x))
\]
where \(f \) is an additive endomorphism of \(\mathbb{R} \).

Proposition

Under the assumption of continuity, the additive endomorphisms \(f \) of \(\mathbb{R} \) are the functions
\[
f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto cx
\]
where \(c \in \mathbb{R} \).
The field of real numbers

Proposition

A homomorphism ϵ from the additive group of \mathbb{R} to the multiplicative one is a function of this kind

$$\epsilon : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto e^{xf}$$
Proposition

A homomorphism ϵ from the additive group of \mathbb{R} to the multiplicative one is a function of this kind

$$\epsilon : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto e^{(xf)}$$

where f is an additive endomorphism of \mathbb{R}.
Proposition

A homomorphism ϵ from the additive group of \mathbb{R} to the multiplicative one is a function of this kind

$$\epsilon : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto e^{(xf)}$$

where f is an additive endomorphism of \mathbb{R}.

Proposition

Under the assumption of continuity,
The field of real numbers

Proposition

A homomorphism ϵ from the additive group of \mathbb{R} to the multiplicative one is a function of this kind

$$\epsilon : \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto e^{(xf)}$$

where f is an additive endomorphism of \mathbb{R}.

Proposition

Under the assumption of continuity, the additive endomorphisms f of \mathbb{R} are the functions

$$f : \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto cx,$$
The field of real numbers

Proposition

A homomorphism \(\epsilon \) from the additive group of \(\mathbb{R} \) to the multiplicative one is a function of this kind

\[
\epsilon : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto e^{(xf)}
\]

where \(f \) is an additive endomorphism of \(\mathbb{R} \).

Proposition

Under the assumption of continuity, the additive endomorphisms \(f \) of \(\mathbb{R} \) are the functions

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto cx,
\]

where \(c \in \mathbb{R} \).
The Hamel basis
The Hamel basis

However, in the general case, they are determined by the so-called Hamel basis, that are basis of \mathbb{R} over \mathbb{Q}.
However, in the general case, they are determined by the so-called Hamel basis, that are basis of \(\mathbb{R} \) over \(\mathbb{Q} \).

Proposition

If we consider \(\mathbb{R} \) as a vector space over \(\mathbb{Q} \),
However, in the general case, they are determined by the so-called Hamel basis, that are basis of \mathbb{R} over \mathbb{Q}.

Proposition

If we consider \mathbb{R} as a vector space over \mathbb{Q}, the additive endomorphisms f of \mathbb{R} are the linear maps.
The Hamel basis

However, in the general case, they are determined by the so-called Hamel basis, that are basis of \mathbb{R} over \mathbb{Q}.

Proposition

If we consider \mathbb{R} as a vector space over \mathbb{Q}, the additive endomorphisms f of \mathbb{R} are the linear maps.

We know that the Hamel basis exist
However, in the general case, they are determined by the so-called Hamel basis, that are basis of \mathbb{R} over \mathbb{Q}.

Proposition

If we consider \mathbb{R} as a vector space over \mathbb{Q}, the additive endomorphisms f of \mathbb{R} are the linear maps.

We know that the Hamel basis exist but we do not know how to construct them.
Right braces over \mathbb{F}_p

Bachiller (J. Algebra, 2015) gave a complete list of right braces of order p^3, for every prime p. So, we have the list of 3-dimensional right braces over \mathbb{F}_p.

We remark that all these right \mathbb{F}_p-braces V have non-trivial socle $\text{Soc}(V) = \{a \mid a \in V, \forall v \in V a \circ v = a + v\}$, except the following one.

Example (Rump, J. Algebra 2007)

The vector space $V := \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ with $(u_1, u_2, u_3) \circ (v_1, v_2, v_3) := (u_1 + v_1 + u_2 v_3 + u_3 (v_2 + v_1 + v_1 v_3), u_2 + v_2 + u_3 (v_1 + v_3 + v_3 v_2), u_3 + v_3)$ for all $u_1, u_2, u_3, v_1, v_2, v_3 \in \mathbb{F}_2$, is a right \mathbb{F}_2-brace with trivial socle.
Bachiller (J. Algebra, 2015) gave a complete list of right braces of order p^3, for every prime p.
Right braces over \mathbb{F}_p

Bachiller (\textit{J. Algebra}, 2015) gave a complete list of right braces of order p^3, for every prime p. So, we have the list of \textbf{3-dimensional right braces over \mathbb{F}_p}.
Bachiller (*J. Algebra, 2015*) gave a complete list of right braces of order p^3, for every prime p.

So, we have the list of 3-dimensional right braces over \mathbb{F}_p.

We remark that all these right \mathbb{F}_p-braces V have non trivial socle

$$Soc(V) := \{a \mid a \in V, \forall v \in V \ a \circ v = a + v \}.$$
Right braces over \mathbb{F}_p

Bachiller (J. Algebra, 2015) gave a complete list of right braces of order p^3, for every prime p. So, we have the list of 3-dimensional right braces over \mathbb{F}_p.

We remark that all these right \mathbb{F}_p-braces V have non trivial socle:

$$Soc(V) := \{ a \mid a \in V, \forall v \in V \ a \circ v = a + v \} ,$$

except the following one.
Right braces over \mathbb{F}_p

Bachiller (*J. Algebra, 2015*) gave a complete list of right braces of order p^3, for every prime p.

So, we have the list of 3-dimensional right braces over \mathbb{F}_p.

We remark that all these right \mathbb{F}_p-braces V have non trivial socle

$$Soc(V) := \{ a \mid a \in V, \forall v \in V \ a \circ v = a + v \},$$

except the following one.

Example (Rump, *J. Algebra* 2007)

The vector space $V := \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ *with*

$$(u_1, u_2, u_3) \circ (v_1, v_2, v_3) := (u_1 + v_1 + u_2 v_3 + u_3 (v_2 + v_1 + v_1 v_3), u_2 + v_2 + u_3 (v_1 + v_3 + v_3 v_2), u_3 + v_3)$$

for all $u_1, u_2, u_3, v_1, v_2, v_3 \in \mathbb{F}_2$, *is a right* \mathbb{F}_2-*brace with trivial socle.*
The affine group of a vector space

Definition

Let V be a vector space over a field F. The affine group $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is $AGL(V) := \langle GL(V), Tr(V) \rangle$.

We have:
1. $Tr(V) \trianglelefteq AGL(V)$,
2. $AGL(V) = GL(V) \cdot Tr(V)$,
3. $GL(V) \cap Tr(V) = \langle \text{id}_V \rangle$.

Francesco Catino - Braces and regular subgroups 9/32
The affine group of a vector space

Definition

Let V be a vector space over a field F.
The affine group of a vector space

Definition

Let V be a vector space over a field F.

The **affine group** $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is
The affine group of a vector space

Definition

Let V be a vector space over a field F.

The **affine group** $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is

$$AGL(V) := \langle GL(V), Tr(V) \rangle.$$
The affine group of a vector space

Definition

Let V be a vector space over a field F.

The **affine group** $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is

$$AGL(V) := < GL(V), Tr(V) > .$$

We have
The affine group of a vector space

Definition

Let V be a vector space over a field F. The affine group $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is

$$AGL(V) := \langle GL(V), Tr(V) \rangle .$$

We have

1. $Tr(V) \trianglelefteq AGL(V)$,
The affine group of a vector space

Definition

Let V be a vector space over a field F.

The **affine group** $AGL(V)$ of V is the subgroup of $Sym(V)$ generated by the group $GL(V)$ of invertible linear maps of V and the group $Tr(V)$ of translations, that is

$$AGL(V) := <GL(V), Tr(V)>.$$

We have

1. $Tr(V) \subseteq AGL(V)$,
2. $AGL(V) = GL(V) \cdot Tr(V)$,
3. $GL(V) \cap Tr(V) = <id_V>$.
A natural embedding of $AGL(V)$ into $GL(F \oplus V)$

Proposition

The function $\Theta : AGL(V) \rightarrow GL(F \oplus V)$, $\gamma t v \mapsto \bar{\gamma} \bar{t} v$ is an embedding.

The group $AGL(V)$ acts on the right on the set of affine vectors $\Omega := \{1 + v | v \in V\}$.

Francesco Catino - Braces and regular subgroups
A natural embedding of $AGL(V)$ into $GL(F \oplus V)$

If $\gamma \in GL(V)$, then we put

$$\bar{\gamma} : F \oplus V \rightarrow F \oplus V, \ a + u \mapsto a + (u\gamma),$$

and
A natural embedding of $AGL(V)$ into $GL(F \oplus V)$

If $\gamma \in GL(V)$, then we put

$$\bar{\gamma} : F \oplus V \to F \oplus V, \quad a + u \mapsto a + (u\gamma),$$

and if t_v is the translation by a vector v, then we put

$$\bar{t}_v : F \oplus V \to F \oplus V, \quad a + u \mapsto a + (ut_{av}).$$

So,
A natural embedding of $AGL(V)$ into $GL(F \oplus V)$

If $\gamma \in GL(V)$, then we put

$$\bar{\gamma} : F \oplus V \rightarrow F \oplus V, \ a + u \mapsto a + (u\gamma),$$

and if t_v is the translation by a vector v, then we put

$$\bar{t}_v : F \oplus V \rightarrow F \oplus V, \ a + u \mapsto a + (ut_vv).$$

So,

Proposition

The function

$$\Theta : AGL(V) \rightarrow GL(F \oplus V), \ \gamma t_v \mapsto \bar{\gamma} \bar{t}_v$$

is an embedding.
A natural embedding of $AGL(V)$ into $GL(F \oplus V)$

If $\gamma \in GL(V)$, then we put

$$\bar{\gamma} : F \oplus V \longrightarrow F \oplus V, \quad a + u \mapsto a + (u\gamma),$$

and if t_v is the translation by a vector v, then we put

$$\bar{t}_v : F \oplus V \longrightarrow F \oplus V, \quad a + u \mapsto a + (ut_{av}).$$

So,

Proposition

The function

$$\Theta : AGL(V) \longrightarrow GL(F \oplus V), \quad \gamma t_v \mapsto \bar{\gamma} \bar{t}_v$$

is an embedding.

The group $AGL(V)\Theta$ acts on the right on the set of affine vectors

$$\Omega := \{1 + v \mid v \in V\}.$$
Finite dimensional vector spaces

Let V be an n-dimensional vector space over a field F. If $(e_0, e_1, ..., e_n)$ is a basis of $F^\oplus V$ with $(e_1, ..., e_n)$ a basis of V, then using the previous embedding Θ we have

$$AGL(n, F) \cong \{ (1 v A) \mid v \in F^n, A \in GL(n, F) \}$$

So, we have

$$GL(n, F) \cong \{ (1 0 0 A) \mid v \in F^n, A \in GL(n, F) \}$$

and

$$Tr(F^n) \cong \{ (1 v 0 I) \mid v \in F^n, A \in GL(n, F) \}$$
Let V be an n-dimensional vector space over a field F.
Let V be an n-dimensional vector space over a field F. If (e_0, e_1, \ldots, e_n) is a basis of $F \oplus V$ with (e_1, \ldots, e_n) a basis of V, then using the previous embedding Θ we have

$$\mathrm{AGL}(n, F) \cong \{ (1, v^0, A) \mid v \in F^n, A \in \mathrm{GL}(n, F) \}$$

So, we have

$$\mathrm{GL}(n, F) \cong \{ (1, 0, A) \mid v \in F^n, A \in \mathrm{GL}(n, F) \}$$

and

$$\mathrm{Tr}(F^n) \cong \{ (1, v^0, I_n) \mid v \in F^n, A \in \mathrm{GL}(n, F) \}$$
Let V be an n-dimensional vector space over a field F. If (e_0, e_1, \ldots, e_n) is a basis of $F \oplus V$ with (e_1, \ldots, e_n) a basis of V, then using the previous embedding Θ we have
Let V be an n-dimensional vector space over a field F. If (e_0, e_1, \ldots, e_n) is a basis of $F \oplus V$ with (e_1, \ldots, e_n) a basis of V, then using the previous embedding Θ we have

$$AGL(n, F) \cong \left\{ \begin{pmatrix} 1 & v \\ 0 & A \end{pmatrix} \bigg| \ v \in F^n, A \in GL(n, F) \right\}$$
Let V be an n-dimensional vector space over a field F. If (e_0, e_1, \ldots, e_n) is a basis of $F \oplus V$ with (e_1, \ldots, e_n) a basis of V, then using the previous embedding Θ we have

$$AGL(n, F) \cong \left\{ \begin{pmatrix} 1 & v \\ 0 & A \end{pmatrix} \middle| \ v \in F^n, A \in GL(n, F) \right\}$$

So, we have
Let V be an n-dimensional vector space over a field F. If $(e_0, e_1, \ldots e_n)$ is a basis of $F \oplus V$ with $(e_1, \ldots e_n)$ a basis of V, then using the previous embedding Θ we have

$$AGL(n, F) \cong \left\{ \begin{pmatrix} 1 & \nu \\ 0 & A \end{pmatrix} \bigg| \nu \in F^n, A \in GL(n, F) \right\}$$

So, we have

$$GL(n, F) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \bigg| \nu \in F^n, A \in GL(n, F) \right\}$$

and
Finite dimensional vector spaces

Let \(V \) be an \(n \)-dimensional vector space over a field \(F \).
If \((e_0, e_1, \ldots, e_n)\) is a basis of \(F \oplus V \) with \((e_1, \ldots, e_n)\) a basis of \(V \), then using the previous embedding \(\Theta \) we have

\[
AGL(n, F) \cong \left\{ \begin{pmatrix} 1 & \nu \\ 0 & A \end{pmatrix} \mid \nu \in F^n, A \in GL(n, F) \right\}
\]

So, we have

\[
GL(n, F) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \mid \nu \in F^n, A \in GL(n, F) \right\}
\]

and

\[
T_r(F^n) \cong \left\{ \begin{pmatrix} 1 & \nu \\ 0 & I_n \end{pmatrix} \mid \nu \in F^n, A \in GL(n, F) \right\}
\]
Regular subgroups of the affine group

Definition
A subgroup T of $\text{AGL}(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u \pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $\text{GL}(V)$ are abelian regular subgroups of $\text{AGL}(V)$.

If T is a regular subgroup of $\text{AGL}(n, F)$, then for every $v \in V$ there exists a unique element $\gamma_v \in \text{GL}(n, F)$ such that we have $(1, v)$ as first row, in the embedding of T in $\text{GL}(n+1, F)$.

Thus $T = \{(1, v) \gamma_v \mid v \in F^n\}$
A subgroup T of $AGL(V)$ is called regular.
Definition

A subgroup T of $AGL(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u\pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$. If T is a regular subgroup of $AGL(n, F)$, then for every $v \in V$ there exists a unique element $\gamma_v \in GL(n, F)$ such that we have $(1, v)$ as first row, in the embedding of T in $GL(n+1, F)$. Thus $T = \{(1,v)\gamma_v : v \in F^n\}$.

Regular subgroups of the affine group
Regular subgroups of the affine group

Definition

A subgroup T of $AGL(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u\pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.
Regular subgroups of the affine group

Definition

A subgroup T of $AGL(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u \pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

If T is a regular subgroup of $AGL(n, F)$, then
Regular subgroups of the affine group

Definition

*A subgroup T of $AGL(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u\pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

If T is a regular subgroup of $AGL(n, F)$, then for every $v \in V$ there exists a unique element $\gamma_v \in GL(n, F)$ such that we have $(1, v)$ as first row, in the embedding of T in $GL(n + 1, F)$.
Regular subgroups of the affine group

Definition

A subgroup T of $AGL(V)$ is called regular if for every $(u, v) \in V \times V$ there exists a unique $\pi \in T$ such that $u\pi = v$.

Clearly the translation group $T_r(V)$ and any of its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

If T is a regular subgroup of $AGL(n, F)$, then for every $v \in V$ there exists a unique element $\gamma_v \in GL(n, F)$ such that we have $(1, v)$ as first row, in the embedding of T in $GL(n + 1, F)$. Thus

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \mid v \in F^n \right\}$$
The main problem

The following problem has been explicitly stated by Liebeck, Praeger and Saxl (Mem. Amer. Soc., 2010).

Problem
Finding all regular subgroups of $AGL(V)$.

The problem has attracted the interest of many authors. For instance:
- Liebeck, Praeger, Saxl (J. Algebra, 2000)
- Hegedűs (J. Algebra, 2000)
- Tamburini Bellani (Int. J. Group Theory, 2012)
- Pellegrini, Tamburini Bellani (Linear Algebra Appl. 2016 - J. Algebra, 2017)
The following problem has been explicitly stated by Liebeck, Praeger and Saxl (Mem. Amer. Soc., 2010).
The main problem

The following problem has been explicitly stated by Liebeck, Praeger and Saxl (Mem. Amer. Soc., 2010).

Problem

Finding all regular subgroups of $AGL(V)$.
The following problem has been explicitly stated by Liebeck, Praeger and Saxl (Mem. Amer. Soc., 2010).

Problem

Finding all regular subgroups of $AGL(V)$.

The problem has attracted the interest of many authors. For instance:
The following problem has been explicitly stated by Liebeck, Praeger and Saxl (Mem. Amer. Soc., 2010).

Problem

Finding all regular subgroups of $AGL(V)$.

The problem has attracted the interest of many authors. For instance:
- Liebeck, Praeger, Saxl (J. Algebra, 2000)
- Hegedűs (J. Algebra, 2000)
- Tamburini Bellani (Int. J. Group Theory, 2012)
- Pellegrini, Tamburini Bellani (Linear Algebra Appl. 2016 - J. Algebra, 2017)
Caranti, Dalla Volta and Sala (2006) obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of commutative F-algebras that have V as underlying vector space.

Rizzo and I (2009) generalized this result obtaining a complete description of all regular subgroups of the affine group $AGL(V)$ in terms of right F-braces that have V as underlying vector space.
Caranti, Dalla Volta and Sala (2006) obtained a simple description of all
abelian regular subgroups of the affine group $AGL(V)$
Caranti, Dalla Volta and Sala (2006) obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of commutative radical F-algebras that have V as underlying vector space.
Caranti, Dalla Volta and Sala (2006) obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of commutative radical F-algebras that have V as underlying vector space.

Rizzo and I (2009) generalized this result obtaining a complete description of all regular subgroups of the affine group $AGL(V)$.
An approach based on braces

Caranti, Dalla Volta and Sala (2006) obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of commutative radical F-algebras that have V as underlying vector space.

Rizzo and I (2009) generalized this result obtaining a complete description of all regular subgroups of the affine group $AGL(V)$ in terms of right F-braces that have V as underlying vector space.
The aim of the talk

Braces

The affine group

Main results

Further results

Construction of right F-braces

Regular subgroups

The main problem

An approach based on braces

A link between right F-braces and regular subgroups

Theorem

Let V be a vector space over a field F.

Denote by RB the class of right F-braces with underlying vector space V and by T the set of all regular subgroups of the affine group $AGL(V)$.

1. If $V \in RB$, then $T(V) = \{ \tau_x | x \in V \}$, where $\tau_x : V \rightarrow V$, $y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The function $f : RB \rightarrow T$, $V \mapsto T(V)$, is a bijection. Moreover, in this correspondence isomorphic right F-braces correspond regular subgroups of $AGL(V)$ conjugated under the action of $GL(V)$.
A link between right F-braces and regular subgroups

Theorem

Let V be a vector space over a field F.

\[\text{Let } V \text{ be a vector space over a field } F. \]
A link between right F-braces and regular subgroups

Theorem

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of right F-braces with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $AGL(V)$.

1. If $V \in \mathcal{RB}$, then $\mathcal{T}(V) = \{ \tau_x \mid x \in V \}$, where $\tau_x : V \to V$, $y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The function $f : \mathcal{RB} \to \mathcal{T}$, $V \mapsto \mathcal{T}(V)$, is a bijection. Moreover, in this correspondence isomorphic right F-braces correspond regular subgroups of $AGL(V)$ conjugated under the action of $GL(V)$.

The aim of the talk
Braces
The affine group
Main results
Further results
Construction of right F-braces

Regular subgroups
The main problem
An approach based on braces

A link between right F-braces and regular subgroups

Theorem

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of right F-braces with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $\text{AGL}(V)$.

1. If $V \in \mathcal{RB}$, then

 $$T(V) = \{\tau_x | x \in V\},$$

 where $\tau_x : V \to V, y \mapsto y \circ x,$
Let V be a vector space over a field F. Denote by \mathcal{RB} the class of right F-braces with underlying vector space V and by T the set of all regular subgroups of the affine group $AGL(V)$.

1. If $V \in \mathcal{RB}$, then

$$T(V) = \{\tau_x | x \in V\},$$

where $\tau_x : V \to V, y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

A link between right F-braces and regular subgroups

Theorem
A link between right F-braces and regular subgroups

Theorem

*Let V be a vector space over a field F. Denote by \mathcal{RB} the class of right F-braces with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $\operatorname{AGL}(V)$.

1. If $V \in \mathcal{RB}$, then

 $$T(V) = \{\tau_x | x \in V\},$$

 where $\tau_x : V \rightarrow V, y \mapsto y \circ x$, is a regular subgroup of the affine group $\operatorname{AGL}(V)$.

2. The function

 $$f : \mathcal{RB} \rightarrow \mathcal{T}, \quad V \mapsto T(V)$$

 is a bijection.*
A link between right F-braces and regular subgroups

Theorem

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of right F-braces with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $AGL(V)$.

1. If $V \in \mathcal{RB}$, then
 \[T(V) = \{ \tau_x | x \in V \}, \]
 where $\tau_x : V \to V, y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The function
 \[f : \mathcal{RB} \to \mathcal{T}, \quad V \mapsto T(V) \]
 is a bijection.

Moreover, in this correspondence isomorphic right F-braces correspond regular subgroups of $AGL(V)$ conjugated under the action of $GL(V)$.
Some useful remarks
Some useful remarks

If V is a right F-brace, then the function

$$\tau : V \rightarrow T(V), \quad v \mapsto \tau_v$$
Some useful remarks

If \(V \) is a right \(F \)-brace, then the function

\[
\tau : V \rightarrow T(V), \quad v \mapsto \tau_v
\]

is an isomorphism from the multiplicative group of \(V \) into the regular subgroup \(T(V) \) of \(AGL(V) \).
Some useful remarks

If V is a right F-brace, then the function

$$\tau : V \rightarrow T(V), \quad v \mapsto \tau_v$$

is an isomorphism from the multiplicative group of V into the regular subgroup $T(V)$ of $AGL(V)$.

If V is a finite dimensional vector space with a fixed basis, then
Some useful remarks

If V is a right F-brace, then the function

$$\tau : V \rightarrow T(V), \quad v \mapsto \tau_v$$

is an isomorphism from the multiplicative group of V into the regular subgroup $T(V)$ of $AGL(V)$.

If V is a finite dimensional vector space with a fixed basis, then

$$T(V) = \left\{ \begin{pmatrix} 1 & v \\ 0 & M_v \end{pmatrix} \bigg| v \in V \right\},$$
Some useful remarks

If V is a right F-brace, then the function

$$\tau : V \rightarrow T(V), \quad v \mapsto \tau_v$$

is an isomorphism from the multiplicative group of V into the regular subgroup $T(V)$ of $AGL(V)$.

If V is a finite dimensional vector space with a fixed basis, then

$$T(V) = \left\{ \begin{pmatrix} 1 & v \\ 0 & M_v \end{pmatrix} \bigg| v \in V \right\},$$

where M_v is the matrix associated to the linear map

$$\gamma_v : V \rightarrow V, \quad x \mapsto x \circ v - v,$$

for every $v \in V$.
An example

Let F be a field and α an endomorphism of the additive group of F.

On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(\alpha(v_1)) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$.

Then V is a radical F-algebra and so it is right F-brace.

Then, we have

$$\gamma((v_1, v_2)) = (1, 0) \circ (v_1, v_2) - (v_1, v_2) = (1, v_1 \alpha)$$

and so $T(V) =$ \begin{align*}
\begin{cases}
\begin{pmatrix}
1 & v_1 \\
0 & 1
\end{pmatrix} & \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\end{cases}
\end{align*}

is a regular subgroup of $\text{AGL}(2, F)$.
An example

Let F be a field and α an endomorphism of the additive group of F.

On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(\alpha(v_1)) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a radical F-algebra and so it is right F-brace.

Then, we have

$$
(1, 0) \gamma (v_1, v_2) = (1, 0) \circ (v_1, v_2) - (v_1, v_2) = (1, v_1 \alpha) \\
(0, 1) \gamma (v_1, v_2) = (0, 1) \circ (v_1, v_2) - (v_1, v_2) = (0, 1)
$$

for all $v_1, v_2 \in F$, and so $T(V) = \{
\begin{pmatrix}
1 & v_1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\mid v_1, v_2 \in F
\}$ is a regular subgroup of $AGL(2, F)$.

Francesco Catino - Braces and regular subgroups
An example

Let F be a field and α an endomorphism of the additive group of F. On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(v_1 \alpha) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$.
An example

Let F be a field and α an endomorphism of the additive group of F. On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(v_1 \alpha) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a radical F-algebra.
Let F be a field and α an endomorphism of the additive group of F. On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(v_1 \alpha) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a radical F-algebra and so it is right F-brace.
An example

Let F be a field and α an endomorphism of the additive group of F. On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(v_1 \alpha) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a radical F-algebra and so it is right F-brace.

Then, we have

$$(1, 0)_{(v_1, v_2)} = (1, 0) \circ (v_1, v_2) - (v_1, v_2) = (1, v_1 \alpha)$$

$$(0, 1)_{(v_1, v_2)} = (0, 1) \circ (v_1, v_2) - (v_1, v_2) = (0, 1)$$

for all $v_1, v_2 \in F$,

Francesco Catino - Braces and regular subgroups
An example

Let F be a field and α an endomorphism of the additive group of F. On the vector space $V := F \times F$ we define the operation given by

$$(u_1, u_2) \circ (v_1, v_2) := (u_1 + v_1, u_1(v_1\alpha) + u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$. Then V is a radical F-algebra and so it is right F-brace.

Then, we have

$$(1, 0)\gamma_{(v_1, v_2)} = (1, 0) \circ (v_1, v_2) - (v_1, v_2) = (1, v_1\alpha)$$

$$(0, 1)\gamma_{(v_1, v_2)} = (0, 1) \circ (v_1, v_2) - (v_1, v_2) = (0, 1)$$

for all $v_1, v_2 \in F$, and so

$$T(V) = \left\{ \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & 1 & v_1\alpha \\ 0 & 0 & 1 \end{pmatrix} \middle| v_1, v_2 \in F \right\},$$

is a regular subgroup of $AGL(2, F)$.
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one. It is easy to see that the group $T = \{ \begin{pmatrix} 1 & v_1 \\ v_2 \\ 0 & 1 \end{pmatrix} : v_1, v_2 \in F \}$ is a regular subgroup of the affine group $AGL(2, F)$. By the previous result, T is in correspondence with the right F-brace over the vector space $V := F^2$ where the multiplication is given by $(u_1, u_2) \circ (v_1, v_2) = (u_1, u_2)(v_2 \epsilon) + (v_1, v_2)$ for all $u_1, u_2, v_1, v_2 \in F$.

Francesco Catino - Braces and regular subgroups
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one.
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one.
It is easy to see that the group

$$T = \left\{ \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & v_2\epsilon & 1 \\ 0 & 0 & 1 \end{pmatrix} \bigg| v_1, v_2 \in F \right\}$$
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one.

It is easy to see that the group

$$T = \left\{ \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & v_2\epsilon & 1 \\ 0 & 0 & 1 \end{pmatrix} \bigg| \ v_1, v_2 \in F \right\}$$

is a regular subgroup of the affine group $AGL(2, F)$.
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one.

It is easy to see that the group

$$ T = \left\{ \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & v_2\epsilon & 1 \\ 0 & 0 & 1 \end{pmatrix} \bigg| \begin{array}[]{c} v_1, v_2 \in F \end{array} \right\} $$

is a regular subgroup of the affine group $AGL(2, F)$.

By the previous result, T is in correspondence with the right F-brace over the vector space $V := F^2$.
A further example

Let F be a field and ϵ a homomorphism from the additive group of F to the multiplicative one.

It is easy to see that the group

$$T = \left\{ \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & v_2 \epsilon & 1 \\ 0 & 0 & 1 \end{pmatrix} \right| v_1, v_2 \in F \right\}$$

is a regular subgroup of the affine group $AGL(2, F)$.

By the previous result, T is in correspondence with the right F-brace over the vector space $V := F^2$ where the multiplication is given by

$$(u_1, u_2) \circ (v_1, v_2) = (u_1, u_2) \begin{pmatrix} v_2 \epsilon & 1 \\ 0 & 1 \end{pmatrix} + (v_1, v_2) = (u_1 (v_2 \epsilon) + v_1, u_2 + v_2)$$

for all $u_1, u_2, v_1, v_2 \in F$.
The aim of the talk
Braces
The affine group
Main results
Further results
Construction of right F-braces

The intersection with the translation subgroup
Hegedűs' result
Using right F-braces

The problem of the existence of regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation was stated by Liebeck, Praeger, Saxl (2000).

Problem
In which cases are there regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation?

They also proved that no such regular subgroup exists in $AGL(2, F_p)$, $AGL(3, F_p)$, $p > 3$, $AGL(4, F_2)$.
The problem of the existence of regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation was stated by Liebeck, Praeger, Saxl (2000).
The problem of the existence of regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation was stated by Liebeck, Praeger, Saxl (2000).

Problem

In which cases are there regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation?
The problem of the existence of regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation was stated by Liebeck, Praeger, Saxl (2000).

Problem

In which cases are there regular subgroups of the affine group $AGL(n, F)$ having only the identity as translation?

They also proved that no such regular subgroup exists in

- $AGL(2, \mathbb{F}_p)$,
- $AGL(3, \mathbb{F}_p)$, $p > 3$,
- $AGL(4, \mathbb{F}_2)$.
Hegedűs (2000) obtained the following interesting result.
Hegedűs (2000) obtained the following interesting result.

Proposition

The affine group $AGL(n, \mathbb{F}_p)$ has a regular subgroup which contains only the identity as translation if
Hegedűs (2000) obtained the following interesting result.

Proposition

The affine group $AGL(n, \mathbb{F}_p)$ *has a regular subgroup which contains only the identity as translation if*

- $p = 2$ and $n = 3$, or $n \geq 5$,
- $p \neq 2$ and $n \geq 4$.

The intersection with the translation subgroup

Hegedűs’ result

Using right F-braces
Hegedűs’ regular subgroups

Hegedűs’ result

Using right F-braces

In the cases $p = 2$ and $n \geq 3$, odd $p \neq 2$ and $n \geq 4$, Hegedűs provides concrete regular subgroups in the following way:

Let q be a non-degenerate quadratic form on F_{n-1}, let X be the matrix of the polar form of q, let A be a matrix of order p in the orthogonal group associated with q.

Then the set

$$T := \left\{ \begin{pmatrix} 1 & w & \sum_{k=0}^{p} k w A \end{pmatrix} \bigg| \begin{array}{c} k \in F_p, \ w \in F_{n-1} \end{array} \right\}$$

is a regular subgroup of the affine group $\text{AGL}(n, F_p)$ containing only the trivial translation.
Hegedűs’ regular subgroups

In the cases

- \(p = 2 \) and \(n \geq 3 \), odd
- \(p \neq 2 \) and \(n \geq 4 \).

Hegedűs provides concrete regular subgroups in the following way:
Hegedűs’ regular subgroups

In the cases

- $p = 2$ and $n \geq 3$, odd
- $p \neq 2$ and $n \geq 4$.

Hegedűs provides concrete regular subgroups in the following way:

- Let q be a non-degenerate quadratic form on \mathbb{F}_p^{n-1},
Hegedűs’ regular subgroups

In the cases

- \(p = 2 \) and \(n \geq 3 \), odd
- \(p \neq 2 \) and \(n \geq 4 \).

Hegedűs provides concrete regular subgroups in the following way:

- Let \(q \) be a non-degenerate quadratic form on \(\mathbb{F}_p^{n-1} \),
- let \(X \) be the matrix of the polar form of \(q \),
Hegedűs’ regular subgroups

In the cases

- $p = 2$ and $n \geq 3$, odd
- $p \neq 2$ and $n \geq 4$.

Hegedűs provides concrete regular subgroups in the following way:

- Let q be a non-degenerate quadratic form on \mathbb{F}_p^{n-1},
- let X be the matrix of the polar form of q,
- let A be a matrix of order p in the orthogonal group associate with q.
Hegedűs’ regular subgroups

In the cases
- \(p = 2 \) and \(n \geq 3 \), odd
- \(p \neq 2 \) and \(n \geq 4 \).

Hegedűs provides concrete regular subgroups in the following way:
- Let \(q \) be a non-degenerate quadratic form on \(\mathbb{F}_p^{n-1} \),
- let \(X \) be the matrix of the polar form of \(q \),
- let \(A \) be a matrix of order \(p \) in the orthogonal group associate with \(q \).

Then the set
\[
T := \left\{ \begin{pmatrix} 1 & wq + k & w \\ 0 & 1 & 0 \\ 0 & A^k Xw^T & A^k \end{pmatrix} \bigg| k \in \mathbb{F}_p, w \in \mathbb{F}_p^{n-1} \right\}.
\]

is a regular subgroup of the affine group \(AGL(n, \mathbb{F}_p) \) containing only the trivial translation.
An example

Let $V = F_2 \times F_2 \times F_2$ and let q be the non-degenerate quadratic form on F_2^2, given by $(w_2, w_3) q = w_2 w_3$, and let $A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then the matrix X is equal to A, and the Hegedüs' regular subgroup related to q and A is $T = \begin{cases} \begin{pmatrix} 1 & \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ 0 & 1 & 0 & 0 \\ 0 & \mathbf{v}_3 & 1 & 0 \\ \mathbf{v}_2 & \mathbf{v}_1 & 0 & 1 \end{pmatrix} & | \mathbf{v}_1, \mathbf{v}_2 \in F_2 \end{cases}$.

Note that the right F_2-brace associated to T is the Rump's brace seen before.
An example

Let \(V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \) and
An example

Let $V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ and

- let q be the non-degenerate quadratic form on \mathbb{F}_2^2, given by

$$q(w_2, w_3) = w_2 w_3,$$

and
An example

Let $V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ and

- let q be the non-degenerate quadratic form on \mathbb{F}_2^2, given by

$$(w_2, w_3)q = w_2w_3,$$

and

- let

$$A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
An example

Let \(V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \) and

- let \(q \) be the non-degenerate quadratic form on \(\mathbb{F}_2^2 \), given by
 \[
 (w_2, w_3)q = w_2 w_3,
 \]
 and

- let
 \[
 A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
 \]

Then the matrix \(X \) is equal to \(A \),
An example

Let $V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ and

- let q be the non-degenerate quadratic form on \mathbb{F}_2, given by
 \[(w_2, w_3)q = w_2w_3,
 \]

and

- let
 \[A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
 \]

Then the matrix X is equal to A, and the Hegedűs' regular subgroup related to q and A is
An example

Let $V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ and

- let q be the non-degenerate quadratic form on \mathbb{F}_2^2, given by

$$
(w_2, w_3)q = w_2 w_3,
$$

and

- let

$$
A := \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
$$

Then the matrix X is equal to A, and the Hegedűs' regular subgroup related to q and A is

$$
T = \left\{ \begin{pmatrix}
1 & v_1 & v_2 & v_3 \\
0 & 1 & 0 & 0 \\
0 & v_3 & 1 & 0 \\
0 & v_2 + v_1 + v_1 v_3 & v_1 + v_3 + v_3 v_2 & 1
\end{pmatrix} \mid v_1, v_2 \in \mathbb{F}_2 \right\}
$$

Note that the right \mathbb{F}_2-brace associated to T is the Rump's brace seen before.
An example

Let $V = \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ and

- let q be the non-degenerate quadratic form on \mathbb{F}_2^2, given by
 \[(w_2, w_3)q = w_2w_3,
\]
 and

- let
 \[A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

Then the matrix X is equal to A, and the Hegedűs’ regular subgroup related to q and A is

\[
T = \begin{cases}
\begin{pmatrix}
1 & v_1 & v_2 & v_3 \\
0 & 1 & 0 & 0 \\
0 & v_3 & 1 & 0 \\
0 & v_2 + v_1 + v_1v_3 & v_1 + v_3 + v_3v_2 & 1
\end{pmatrix} & \text{if } v_1, v_2 \in \mathbb{F}_2
\end{cases}
\]

Note that the right \mathbb{F}_2-brace associated to T is the Rump’s brace seen before.
The aim of the talk
Braces
The affine group
Main results
Further results
Construction of right F-braces

The intersection with the translation subgroup
Hegedüs’ result
Using right F-braces

Using right F-braces

We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009) If V is a right F-brace, $\mathcal{T}(V) = \{\tau_v | v \in V\}$, where $\tau_v: V \to V, u \mapsto u \circ v$, for every $v \in V$, and $\mathcal{T}_r(V)$ is the translation group, then $\mathcal{T}(V) \cap \mathcal{T}_r(V) = \{\tau_a | a \in \text{Soc}(V)\}$, where we recall that the socle of V is $\text{Soc}(V) := \{a | a \in V, \forall v \in V a \circ v = a + v\}$.

Francesco Catino - Braces and regular subgroups
We can describe the intersection of a regular subgroup with the group of translations by F-braces.
We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009)

If V is a right F-brace,
Using right F-braces

We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009)

If V is a right F-brace, $T(V) = \{ \tau_v \mid v \in V \}$, where $\tau_v : V \to V$, $u \mapsto u \circ v$, for every $v \in V$.

\[
T(V) \cap T_r(V) = \{ \tau_a \mid a \in \text{Soc}(V) \},
\]

where we recall that the socle of V is $\text{Soc}(V) := \{ a \mid a \in V, \forall v \in V a \circ v = a + v \}$.
Using right F-braces

We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009)

If V is a right F-brace, $T(V) = \{ \tau_v \mid v \in V \}$, where $\tau_v : V \to V, u \mapsto u \circ v$, for every $v \in V$, and $T_r(V)$ is the translation group, then
We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009)

If V is a right F-brace, $T(V) = \{ \tau_v \mid v \in V \}$, where $\tau_v : V \to V$, $u \mapsto u \circ v$, for every $v \in V$, and $T_r(V)$ is the translation group, then

$$T(V) \cap T_r(V) = \{ \tau_a \mid a \in Soc(V) \}.$$
Using right F-braces

We can describe the intersection of a regular subgroup with the group of translations by F-braces.

Proposition (Rizzo and I, 2009)

If V is a right F-brace, $T(V) = \{ \tau_v \mid v \in V \}$, where $\tau_v : V \to V, u \mapsto u \circ v$, for every $v \in V$, and $T_r(V)$ is the translation group, then

$$T(V) \cap T_r(V) = \{ \tau_a \mid a \in Soc(V) \},$$

where we recall that the socle of V is

$$Soc(V) := \{ a \mid a \in V, \forall v \in V a \circ v = a + v \}.$$
A generalization of the the Hegedűs’ result

The affine group $A\text{GL}(n,F)$ has a regular subgroup which contains only the identity as translation if:

- p odd, $m = 1$ and $m \geq 3$;
- p odd, $m > 1$ and $m \geq 4$;
- $p = 2$, $m = 1$ and $n \geq 3$, or $n \geq 5$;
- $p = 2$, $m > 1$ and $n = 4$, $n = 5$, or $n = 6$ and $n \geq 8$.

The main tool is the asymmetric product of right F-braces.

In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $A\text{GL}(n,F)$ has a regular subgroup which contains only the identity as translation if p odd, $m = 1$ and $m \geq 3$; p odd, $m > 1$ and $m \geq 4$; $p = 2$, $m = 1$ and $n \geq 3$, or $n \geq 5$; $p = 2$, $m > 1$ and $n = 4$, $n = 5$, or $n = 6$ and $n \geq 8$.

The main tool is the asymmetric product of right F-braces.
A generalization of the the Hegedűs’ result

In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $\operatorname{AGL}(n, \mathbb{F}_p^m)$ has a regular subgroup which contains only the identity as translation if

- p odd, $m = 1$ and $m \geq 3$;
- p odd, $m > 1$ and $m \geq 4$;
- $p = 2$, $m = 1$ and $n = 3$, or $n \geq 5$;
- $p = 2$, $m > 1$ and $n = 4$, $n = 5$, $n = 6$ and $n \geq 8$.

The main tool is the asymmetric product of right F-braces.
In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $AGL(n, \mathbb{F}_{p^m})$ has a regular subgroup which
A generalization of the the Hegedűs’ result

In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $\text{AGL}(n, \mathbb{F}_p^m)$ *has a regular subgroup which contains only the identity as translation if*

The main tool is the asymmetric product of right F-braces.
In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $\text{AGL}(n, \mathbb{F}_{p^m})$ has a regular subgroup which contains only the identity as translation if

- p odd, $m = 1$ and $m \geq 3$;
- p odd, $m > 1$ and $m \geq 4$;
A generalization of the Hegedűs’ result

In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $\text{AGL}(n, \mathbb{F}_{p^m})$ has a regular subgroup which contains only the identity as translation if

- p odd, $m = 1$ and $m \geq 3$;
- p odd, $m > 1$ and $m \geq 4$;
- $p = 2$, $m = 1$ and $n = 3$, or $n \geq 5$;
- $p = 2$, $m > 1$ and $n = 4$, $n = 5$, $n = 6$ and $n \geq 8$.
In this way, Colazzo, Stefanelli and I (2016) generalized the Hegedűs’ result.

Proposition

The affine group $\text{AGL}(n, \mathbb{F}_{p^m})$ has a regular subgroup which contains only the identity as translation if

- p odd, $m = 1$ and $m \geq 3$;
- p odd, $m > 1$ and $m \geq 4$;
- $p = 2$, $m = 1$ and $n = 3$, or $n \geq 5$;
- $p = 2$, $m > 1$ and $n = 4$, $n = 5$, $n = 6$ and $n \geq 8$.

The main tool is the asymmetric product of right F-braces.
Let

- F be a field of characteristic $p \neq 2$;
The asymmetric product of right F-braces

Let

- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
Let

- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
- $b : T \times T \to S$ be a bilinear and symmetric map;
The asymmetric product of right F-braces

Let

- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
- $b : T \times T \to S$ be a bilinear and symmetric map;
- $\alpha : S \to \text{Aut}(T)$ be a homomorphism of the multiplicative group of S into...
Let

- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
- $b : T \times T \to S$ be a bilinear and symmetric map;
- $\alpha : S \to \text{Aut}(T)$ be a homomorphism of the multiplicative group of S into the group of automorphisms of the right F-brace T.
Let
- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
- $b : T \times T \to S$ be a bilinear and symmetric map;
- $\alpha : S \to \text{Aut}(T)$ be a homomorphism of the multiplicative group of S into the group of automorphisms of the right F-brace T.

If we set $t^s := t(s\alpha)$ and
\[
(t_1, t_2)b \circ s + ((t_1 + t_2)^s \circ t_3, t_3)b = (t_1^s \circ t_3, t_2^s \circ t_3)b + s
\]
holds for all $s \in S$ and $t_1, t_2, t_3 \in T$,
Let

- F be a field of characteristic $p \neq 2$;
- S and T be right F-braces;
- $b : T \times T \to S$ be a bilinear and symmetric map;
- $\alpha : S \to \text{Aut}(T)$ be a homomorphism of the multiplicative group of S into the group of automorphisms of the right F-brace T.

If we set $t^s := t(s\alpha)$ and

$$(t_1, t_2)b \circ s + ((t_1 + t_2)^s \circ t_3, t_3)b = (t_1^s \circ t_3, t_2^s \circ t_3)b + s$$

holds for all $s \in S$ and $t_1, t_2, t_3 \in T$, then we may define over $S \times T$ a structure of right F-brace.
The asymmetric product of right F-braces

Namely, we may set the addition, the multiplication over $S \times T$ and the scalar multiplication
\[
(s_1, t_1) + (s_2, t_2) = (s_1 + s_2, (t_1, t_2)b, t_1 + t_2)
\]
\[
(s_1, t_1) \circ (s_2, t_2) = (s_1 \circ s_2, ts_2 \circ t_1)
\]
\[
\mu(s_1, t_1) = (\mu s_1 + \mu^2 (\mu^{-1})^2 (t_1, t_2)b, \mu t_1)
\]
for all $s_1, s_2 \in S$, $t_1, t_2 \in T$ and $\mu \in F$.

This right F-brace is called the asymmetric product of S by T.
The asymmetric product of right F-braces

Namely, we may set the addition, the multiplication over $S \times T$ and the scalar multiplication
The asymmetric product of right F-braces

Namely, we may set the addition, the multiplication over $S \times T$ and the scalar multiplication

$$(s_1, t_1) + (s_2, t_2) = (s_1 + s_2 + (t_1, t_2)b, \ t_1 + t_2)$$

$$(s_1, t_1) \circ (s_2, t_2) = (s_1 \circ s_2, \ t_1 s_2 \circ t_2)$$

$$\mu(s_1, t_1) = (\mu s_1 + \frac{\mu(\mu - 1)}{2}(t_1, t_2)b, \ \mu t_1)$$
The asymmetric product of right F-braces

Namely, we may set the addition, the multiplication over $S \times T$ and the scalar multiplication

\[
(s_1, t_1) + (s_2, t_2) = (s_1 + s_2 + (t_1, t_2)b, \ t_1 + t_2)
\]

\[
(s_1, t_1) \circ (s_2, t_2) = (s_1 \circ s_2, \ t_1^{s_2} \circ t_2)
\]

\[
\mu(s_1, t_1) = (\mu s_1 + \frac{\mu(\mu - 1)}{2}(t_1, t_2)b, \ \mu t_1)
\]

for all $s_1, s_2 \in S$, $t_1, t_2 \in T$ and $\mu \in F$.

The asymmetric product of right F-braces

Namely, we may set the addition, the multiplication over $S \times T$ and the scalar multiplication

\[(s_1, t_1) + (s_2, t_2) = (s_1 + s_2 + (t_1, t_2)b, \ t_1 + t_2)\]

\[(s_1, t_1) \circ (s_2, t_2) = (s_1 \circ s_2, \ t_1^{s_2} \circ t_2)\]

\[\mu(s_1, t_1) = (\mu s_1 + \frac{\mu (\mu - 1)}{2} (t_1, t_2)b, \ \mu t_1)\]

for all $s_1, s_2 \in S$, $t_1, t_2 \in T$ and $\mu \in F$. This right F-brace is called the asymmetric product of S by T.
In the case of characteristic 2, we have only a partial result.
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
- T be a vector space over F;
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
- T be a vector space over F;
- q be a quadratic form on T;
- b the polar form of q
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
- T be a vector space over F;
- q be a quadratic form on T, b the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(T)$ be a homomorphism of the multiplicative group of F into the group of automorphisms of the zero F-brace T.
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
- T be a vector space over F;
- q be a quadratic form on T, b the polar form of q
- $\alpha : F \rightarrow \text{Aut}(T)$ be a homomorphism of the multiplicative group of F into the group of automorphisms of the zero F-brace T.

If

$$(t_1^s \circ t_2)b = (t_1)q \circ s + (t_2)q + (t_1^s \circ t_2)q$$

holds for all $s \in F$ and $t_1, t_2 \in T$,
In the case of characteristic 2, we have only a partial result. Let

- F be a field of characteristic 2;
- T be a vector space over F;
- q be a quadratic form on T, b the polar form of q;
- $\alpha : F \to \text{Aut}(T)$ be a homomorphism of the multiplicative group of F into the group of automorphisms of the zero F-brace T.

If

$$(t_1^s \circ t_2)b = (t_1)q \circ s + (t_2)q + (t_1^s \circ t_2)q$$

holds for all $s \in F$ and $t_1, t_2 \in T$, then we may define over $F \times T$ a structure of right F-brace.
Characteristic 2

Discussion of the asymmetric product of right F-braces and further results on regular subgroups.
Characteristic 2

Namely, we may set the addition, the multiplication over $F \times T$ and the scalar multiplication
Characteristic 2

Namely, we may set the addition, the multiplication over $F \times T$ and the scalar multiplication

\[(s_1, t_1) + (s_2, t_2) = (s_1 + s_2 + (t_1, t_2)b, t_1 + t_2)\]
\[(s_1, t_1) \circ (s_2, t_2) = (s_1 \circ s_2, t_1^s_2 \circ t_2)\]
\[\mu(s_1, t_1) = (\mu s_1 + \mu(\mu - 1)(t_1)q, \mu t_1)\]

for all $s_1, s_2 \in F$, $t_1, t_2 \in T$ and $\mu \in F$.
Particular cases

We extend Hegedűs' result by the asymmetric product of zero F-braces.

Let us note that if S and T are zero right braces over a field F of odd characteristic the condition on b and α becomes easier:

$$(t_1, t_2) b = (t_{s_1}, t_{s_2}) b,$$ for all $t_1, t_2 \in T$ and $s \in S$.

In a similar way, if T is a zero brace over a field F of characteristic 2, the condition on q and α becomes easier:

$$(ts) q = (t) q,$$ for all $t \in T$ and $s \in F$.

Particular cases

We extend Hegedűs’ result by the asymmetric product of zero F-braces.
Particular cases

We extend Hegedűs’ result by the asymmetric product of zero F-braces.

Let us note that if S and T are zero right braces over a field F of odd characteristic the condition on b and α becomes easier:
Particular cases

We extend Hegedűs’ result by the asymmetric product of zero \(F \)-braces.

Let us note that if \(S \) and \(T \) are zero right braces over a field \(F \) of odd characteristic the condition on \(b \) and \(\alpha \) becomes easier:

\[
(t_1, t_2)b = (t_1^s, t_2^s)b,
\]

for all \(t_1, t_2 \in T \) and \(s \in S \).
Particular cases

We extend Hegedűs’ result by the asymmetric product of zero F-braces.

Let us note that if S and T are zero right braces over a field F of odd characteristic the condition on b and α becomes easier:

$$(t_1, t_2)b = (t_1^s, t_2^s)b,$$

for all $t_1, t_2 \in T$ and $s \in S$.

In a similar way, if T is a zero brace over a field F of characteristic 2, the condition on q and α becomes easier:
We extend Hegedűs’ result by the asymmetric product of zero F-braces.

Let us note that if S and T are zero right braces over a field F of odd characteristic the condition on b and α becomes easier:

$$(t_1, t_2)b = (t_1^s, t_2^s)b,$$

for all $t_1, t_2 \in T$ and $s \in S$.

In a similar way, if T is a zero brace over a field F of characteristic 2, the condition on q and α becomes easier:

$$(t^s)q = (t)q,$$

for all $t \in T$ and $s \in F$.
Pellegrini and Tamburini (2017) generalized the result of Colazzo, Stefanelli and me (2016) proving the following.

Theorem
Let F be any field and let W be a subspace of F^n as a vector space over its prime field F_0. Assume that one of the following conditions hold:
- $n = 3$ and $F = F_2$;
- $n \geq 4$ and $\text{char } F \neq 2$;
- $n \geq 5$ and $\text{char } F = 2$;

Then, there exists a regular subgroup R_W of $\text{AGL}(n, F)$ such that $R_W \cap \text{Tr}(F^n) \cong (W, +)$.

In particular there exists a regular subgroup R that contains only the identity as translation.

We note that the authors use an approach based only on linear algebra.
Pellegrini and Tamburini (2017) generalized the result of Colazzo, Stefanelli and me (2016) proving the following.
Pellegrini and Tamburini (2017) generalized the result of Colazzo, Stefanelli and me (2016) proving the following.

Theorem

Let F be any field and let W be a subspace of F, as a vector space over its prime field F_0. Assume that one of the following conditions hold:

- $n = 3$ and $F = \mathbb{F}_2$;
- $n \geq 4$ and $\text{char } F \neq 2$;
- $n \geq 5$ and $\text{char } F = 2$;

Then, there exists a regular subgroup R_W of $\text{AGL}(n, F)$ such that

$$R_W \cap T_r(F^n) \cong (W, +).$$

In particular there exists a regular subgroup R that contains only the identity as translation.
Pellegrini and Tamburini (2017) generalized the result of Colazzo, Stefanelli and me (2016) proving the following.

Theorem

Let F be any field and let W be a subspace of F, as a vector space over its prime field F_0. Assume that one of the following conditions hold:

- $n = 3$ and $F = \mathbb{F}_2$;
- $n \geq 4$ and $\text{char } F \neq 2$;
- $n \geq 5$ and $\text{char } F = 2$;

Then, there exists a regular subgroup R_W of $\text{AGL}(n, F)$ such that

$$R_W \cap T_r(F^n) \cong (W, +).$$

In particular there exists a regular subgroup R that contains only the identity as translation.

We note that the authors use an approach based only on linear algebra.
The key lemma

Lemma

Let $m, n \in \mathbb{N}$ and let d be a fixed row vector of \mathbb{F}^n.

Let q be a quadratic form on \mathbb{F}^m with polar form X and let φ be a group homomorphism from $\left(\mathbb{F}^n, +\right)$ into the orthogonal group $O_m(\mathbb{F}, q)$.

Then $R = \left\{ \begin{array}{l}
\begin{pmatrix}
1 & (v_q) + k w \\
0 & 0
\end{pmatrix}
\otimes a \varphi(X v^T) \\
\end{array} \right| w \in \mathbb{F}^m, k \in \mathbb{F}^n \right\}$ is a regular subgroup of $AGL(m+n, \mathbb{F})$ and, if q is non-degenerate and $d \neq 0$, we have $R \cap Tr(\mathbb{F}^m + k) \sim \text{Ker}(\varphi)$.

Francesco Catino - Braces and regular subgroups
Lemma

Let $m, n \in \mathbb{N}$ and let d be a fixed row vector of F^n.
Let $m, n \in \mathbb{N}$ and let d be a fixed row vector of F^n. Let q be a quadratic form on F^m with polar form X. Then $R = \{ \begin{pmatrix} 1 (v \cdot q) & d + k w \\ 0 & 0 (a \cdot \phi) \end{pmatrix} \mid w \in F^m, k \in F^n \}$ is a regular subgroup of $AGL(m+n, F)$ and, if q is non-degenerate and $d \neq 0$, we have $R \cap Tr(F^m+k) \cong \text{Ker}(\phi)$.
The key lemma

Lemma

Let $m, n \in \mathbb{N}$ and let d be a fixed row vector of F^n. Let q be a quadratic form on F^m with polar form X and let φ be a group homomorphism from $(F^n, +)$ into the orthogonal group $O_m(F, q)$.
The key lemma

Lemma

Let \(m, n \in \mathbb{N} \) and let \(d \) be a fixed row vector of \(F^n \). Let \(q \) be a quadratic form on \(F^m \) with polar form \(X \) and let \(\varphi \) be a group homomorphism from \((F^n, +)\) into the orthogonal group \(O_m(F, q) \). Then

\[
R = \left\{ \begin{pmatrix} 1 & (vq)d + k & w \\ 0 & I_n & 0 \\ 0 & (a \varphi)Xv^T \otimes d & a \varphi \end{pmatrix} \middle| \ w \in F^m, k \in F^n \right\}
\]

is a regular subgroup of \(AGL(m + n, F) \) and,
The key lemma

Lemma

Let $m, n \in \mathbb{N}$ and let d be a fixed row vector of F^n. Let q be a quadratic form on F^m with polar form X and let φ be a group homomorphism from $(F^n, +)$ into the orthogonal group $O_m(F, q)$. Then

$$R = \left\{ \begin{pmatrix} 1 & (vq)d + k & w \\ 0 & I_n & 0 \\ 0 & (a\varphi)Xv^T \otimes d & a\varphi \end{pmatrix} \mid w \in F^m, k \in F^n \right\}$$

is a regular subgroup of $AGL(m + n, F)$ and, if q is non-degenerate and $d \neq 0$, we have

$$R \cap Tr(F^{m+k}) \cong Ker(\varphi).$$
Some examples
Some examples

Assume $\text{char } F = 2$, $n = 2t + 1 \geq 3$
Some examples

Assume $\text{char } F = 2$, $n = 2t + 1 \geq 3$ and consider the quadratic form q on F^{2t} defined by

$$(x_1, \ldots, x_{2t}) q := \sum_{i=1}^{t} x_i x_{t+i}.$$
Assume $\text{char } F = 2$, $n = 2t + 1 \geq 3$ and consider the quadratic form q on F^{2t} defined by

$$(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_i x_{t+i}.$$

If $n \geq 5$, the function

$$\varphi : F \rightarrow O_{2t}(F, q), a \mapsto l_{2t} + a(E_{1,t} + E_{2t,t+1})$$
Some examples

Assume \(\text{char } F = 2 \), \(n = 2t + 1 \geq 3 \) and consider the quadratic form \(q \) on \(F^{2t} \) defined by

\[
(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_i x_{t+i}.
\]

If \(n \geq 5 \), the function

\[
\varphi : F \longrightarrow O_{2t}(F, q), a \mapsto l_{2t} + a(E_{1,t} + E_{2t,t+1})
\]

is a monomorphism from \((F, +)\) into \(O_{2t}(F, q) \).
Some examples

Assume \(\text{char } F = 2, \ n = 2t + 1 \geq 3 \) and consider the quadratic form \(q \) on \(F^{2t} \) defined by

\[
(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_i x_{t+i}.
\]

If \(n \geq 5 \), the function

\[
\varphi : F \longrightarrow O_{2t}(F, q), \ a \mapsto I_{2t} + a(E_{1,t} + E_{2t,t+1})
\]

is a monomorphism from \((F, +)\) into \(O_{2t}(F, q) \).

If \(n = 3 \) and \(F = \mathbb{F}_2 \)
Assume $\text{char } F = 2$, $n = 2t + 1 \geq 3$ and consider the quadratic form q on F^{2t} defined by

$$(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_ix_{t+i}.$$

If $n \geq 5$, the function

$$\varphi : F \rightarrow O_{2t}(F, q), a \mapsto l_{2t} + a(E_{1,t} + E_{2t,t+1})$$

is a monomorphism from $(F, +)$ into $O_{2t}(F, q)$. If $n = 3$ and $F = \mathbb{F}_2$ we define the monomorphism $\varphi : \mathbb{F}_2 \rightarrow O_2(\mathbb{F}_2, q)$ by setting $1\varphi = E_{1,2} + E_{2,1}$.
Assume \(\text{char } F = 2, \ n = 2t + 1 \geq 3 \) and consider the quadratic form \(q \) on \(F^{2t} \) defined by

\[
(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_i x_{t+i}.
\]

If \(n \geq 5 \), the function

\[
\varphi : F \longrightarrow O_{2t}(F, q), \ a \mapsto l_{2t} + a(E_{1,t} + E_{2t,t+1})
\]

is a monomorphism from \((F, +)\) into \(O_{2t}(F, q) \).

If \(n = 3 \) and \(F = \mathbb{F}_2 \) we define the monomorphism \(\varphi : \mathbb{F}_2 \longrightarrow O_2(\mathbb{F}_2, q) \) by setting \(1 \varphi = E_{1,2} + E_{2,1} \).

With these definitions of \(q \) and \(\varphi \) we obtain a regular subgroup of \(AGL(n, F) \) that intersects trivially \(T_r(F^n) \).
Assume $\text{char } F = 2$, $n = 2t + 1 \geq 3$ and consider the quadratic form q on F^{2t} defined by

$$(x_1, \ldots, x_{2t})q := \sum_{i=1}^{t} x_i x_{t+i}.$$

If $n \geq 5$, the function

$$\varphi : F \longrightarrow O_{2t}(F, q), a \mapsto l_{2t} + a(E_{1,t} + E_{2t,t+1})$$

is a monomorphism from $(F, +)$ into $O_{2t}(F, q)$.

If $n = 3$ and $F = F_2$ we define the monomorphism $\varphi : F^2 \longrightarrow O_2(F_2, q)$ by setting $1\varphi = E_{1,2} + E_{2,1}$.

With these definitions of q and φ we obtain a regular subgroup of $AGL(n, F)$ that intersects trivially $T_r(F^n)$.

Then we can obtain right F-braces with trivial socle.