An element of a(n associative) ring (with 1) is clean if it is the sum of a unit and an idempotent. A ring is clean if every element in it is clean. The concept of clean rings was formulated by Nicholson [8] in the course of his study of exchange rings, for both are closely related. Cleanliness in group rings has been studied from 2001 [3] and has been attracting attention ever since.

Several related concepts have been proposed. In 2010, Vaš proposed the definition of a \(\ast \)-clean ring ("star"-clean) [9]: a \(\ast \)-ring (ring with an involution \(\ast \)) in which every element may be written as a sum of a unit and a projection (a \(\ast \)-symmetric idempotent). Clearly, every \(\ast \)-clean ring is clean. So Vaš asked in [9]: when is a \(\ast \)-ring clean, but not \(\ast \)-clean?

Since every group \(G \) is endowed with the classical involution \(g \mapsto g^{-1} \), group rings \(RG \) are almost always \(\ast \)-rings: if \(R \) is a commutative rings, for instance, an involution in \(RG \) is obtained from the \(R \)-linear extension of the classical involution in \(G \) (and is also called the classical involution in \(RG \)). The \(\ast \)-cleanliness of group rings was first approached in 2011 [6]. Very little is still known about conditions under which a group ring with the classical involution is \(\ast \)-clean.

In this talk, we present clean rings, \(\ast \)-clean rings, some answers to Vaš’s question, their story in the realm of group rings, and some recent results [1, 2, 4, 5, 7].

References