Let $\mathbb{Q}[G]$ be the rational group algebra of the finite group G. Since \mathbb{Q} is a perfect field, every element x of $\mathbb{Q}[G]$ has a unique additive Jordan decomposition $x = x_s + x_n$, where x_s is semisimple and where x_n commutes with x_s and is nilpotent. If x is a unit, then x_s is also invertible and $x = x_s(1 + x_1^2x_n)$ is a product of a semisimple unit x_s and a commuting unipotent unit $x_u = 1 + x_1x_n$. This is the unique multiplicative Jordan decomposition of x. Following Hales and Passi, we say that G has the multiplicative Jordan decomposition property (MJD) if for every unit a of $\mathbb{Z}[G]$, its semisimple and unipotent parts are both contained in $\mathbb{Z}[G]$. It is an interesting and quite difficult problem to determine which groups have MJD. In this talk, I will discuss the results of Hales and Passi, as well as my results with Liu.