Two central simple algebras, A_1 with center k_1 and A_2 with center k_2, are said to be forms of each other if they become isomorphic after extensions of scalars, that is there exists a field K which extends k_1 and k_2 and $A_1 \otimes_{k_1} K \cong A_2 \otimes_{k_2} K$ as K algebras. Using this terminology, one knows that any k-central simple algebra and in particular $M_n(k)$ admits a division algebra form.

Let G be any finite group. We apply tools from PI theory (and in particular generic constructions) in order to characterize the finite dimensional G-simple algebras over an algebraically closed field of characteristic zero which admit a G-graded division algebra form. Joint work with Yaakov Karasik.