ON THE STRUCTURE MONOID AND ALGEBRA OF LEFT NON-DEGENERATE SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION

Arne Van Antwerpen
(joint work w. E. Jespers, Ł. Kubat)
YANG-BAXTER AND ALGEBRAIC STRUCTURES

Definition
A set-theoretic solution to the Yang-Baxter equation is a tuple
\((X, r)\), where \(X\) is a set and \(r : X \times X \rightarrow X \times X\) a function such that (on \(X^3\))

\[
(id_X \times r)(r \times id_X)(id_X \times r) = (r \times id_X)(id_X \times r)(r \times id_X).
\]

For further reference, denote \(r(x, y) = (\lambda_x(y), \rho_y(x))\).
A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r : X \times X \to X \times X$ a function such that (on X^3)

$$(\text{id}_X \times r) (r \times \text{id}_X) (\text{id}_X \times r) = (r \times \text{id}_X) (\text{id}_X \times r) (r \times \text{id}_X).$$

For further reference, denote $r(x, y) = (\lambda_x(y), \rho_y(x))$.

A set-theoretic solution (X, r) is called

- left (resp. right) non-degenerate, if λ_x (resp. ρ_y) is bijective,
- non-degenerate, if it is both left and right non-degenerate,
- involutive, if $r^2 = \text{id}_{X \times X}$,
- squarefree, if for any $x \in X$, we have $r(x, x) = (x, x)$.
APPLIED CALCULUS EQUATION

- Statistical Physics (work of Yang and Baxter),
- Construction of Hopf Algebras,
- Knot theory (Reidemeister III, colourings),
- Quadratic algebras.
Definition

Let \((X, r)\) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

\[
M(X, r) = \langle \forall x \in X \mid xy = \lambda_x(y)\rho_y(x) \rangle,
\]

is called the structure monoid of \((X, r)\).
Definition

Let \((X, r)\) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

\[
M(X, r) = \langle x \in X \mid xy = \lambda_x(y)\rho_y(x) \rangle,
\]

is called the structure monoid of \((X, r)\).

The group \(G(X, r)\) generated by the same presentation is called the structure group of \((X, r)\).
Theorem (ESS, LYZ, S, GV)

Let \((X, r)\) be a non-degenerate solution to YBE, then there exists a unique solution \(r_G\) on the group \(G(X, r)\) such that the associated solution \(r_G\) satisfies

\[r_G(i \times i) = (i \times i)r, \]

where \(i : X \to G(X, r)\) is the canonical map.
Theorem (ESS, LYZ, S, GV)

Let \((X, r)\) be a non-degenerate solution to YBE, then there exists a unique solution \(r_G\) on the group \(G(X, r)\) such that the associated solution \(r_G\) satisfies

\[
r_G(i \times i) = (i \times i)r,
\]

where \(i : X \to G(X, r)\) is the canonical map.

However, there exists a unique solution \(r_M\) on \(M(X, r)\) such that \(r_M|_{X \times X} = r\).
Theorem (GIVdB, JO)

Let \((X, r)\) be a finite, involutive non-degenerate set-theoretic solution. Then, \(G(X, r)\) is a group of \(I\)-type.

In particular, \(G(X, r)\) is a regular subgroup of \(\mathbb{Z}^{\left|X\right|} \rtimes \text{Sym}(X)\) and \(M(X, r)\) is a regular submonoid of \(\mathbb{N}^{\left|X\right|} \rtimes \text{Sym}(X)\).
Definition
Let \((X, r)\) be a set-theoretic solution. Denote the monoid

\[
A(X, r) = \langle x \in X \mid x \lambda_x(y) = \lambda_x(y) \lambda_{\rho_y(x)}(\lambda_x(y)) \rangle.
\]

If \((X, r)\) is left non-degenerate, then for any \(x \in X\) there exists a bijective map \(\sigma_x : X \rightarrow X\) such that

\[
A(X, r) = \langle x \in X \mid xy = y \sigma_y(x) \rangle.
\]

Furthermore, \(s(x, y) = (y, \sigma_y(x))\) defines a non-degenerate set-theoretic solution.
Theorem (LV, JKA)

Let \((X, r)\) be a left non-degenerate set-theoretic solution. Then, \(M(X, r)\) is a regular submonoid of \(A(X, r) \rtimes \text{Sym}(X)\),

where \(x \in X\) is embedded as \((x, \lambda_x)\).
For bijective left non-degenerate set-theoretic solutions, one extends $\sigma : X \rightarrow X$ to an endomorphism σ_a on $A(X, r)$, where $a \in A(X, r)$.

Theorem

Let (X, r) be a finite bijective left non-degenerate solution. Then, there exists a positive integer d such that a^d is central in $A(X, r)$ for every $a \in A(X, r)$.
For bijective left non-degenerate set-theoretic solutions, one extends $\sigma : X \rightarrow X$ to an endomorphism σ_a on $A(X, r)$, where $a \in A(X, r)$.

Theorem

Let (X, r) be a finite bijective left non-degenerate solution. Then, there exists a positive integer d such that a^d is central in $A(X, r)$ for every $a \in A(X, r)$.

Furthermore, $M(X, r)$ is a central-by-finite monoid
Theorem

Let \((X, r)\) be a finite bijective left non-degenerate solution and \(K\) a field. Then, \(KM = KM(X, r)\) is a Noetherian PI-algebra, with

\[
\text{ClKdim}(KM) = \text{GKdim}(KM) = \text{rk}(M) = \text{rk}(A) \leq |X|.
\]
Conjecture
Let (X, r) be a finite bijective left non-degenerate solution. Does the cancellativity of $M(X, r)$ imply that (X, r) is involutive?

Theorem
Let (X, r) be a finite bijective left non-degenerate solution. Then the following are equivalent:

- (X, r) is an involutive solution,
- $M(X, r)$ is a cancellative monoid,
- KM is a prime algebra,
- KM is a domain,
- $GKdim(KM) = |X|$.
Since every element in $A(X, r)$ is normal, it follows that every prime ideal is determined by invariant subsets of X under certain σ_X.

Theorem

Let (X, r) be a bijective square-free finite left non-degenerate solution. Then every prime ideal P of $M(X, r)$ of height k is determined by prime ideals Q_1, \ldots, Q_n of $A(X, r)$ of height k, i.e.

$$P = (Q_1 \cap \ldots \cap Q_n)^e.$$
Can we describe prime ideals of the algebra KM? Let us first consider prime ideals not intersecting the monoid.
Can we describe prime ideals of the algebra KM? Let us first consider prime ideals not intersecting the monoid.

Theorem

Let (X, r) *be a finite bijective left non-degenerate solution. Then there exists an inclusion preserving bijection between prime ideals of* $KG(X, r)$ *and prime ideals* P *of* KM *with* $P \cap M = \emptyset$. *
Let $Y \subseteq X$. Denote $M_Y = \bigcap_{y \in Y} yM$ and $D_Y = M_Y \setminus \bigcup_{x \in X \setminus Y} M\{x\}$.
DIVISIBILITY IN M

Let $Y \subseteq X$. Denote $M_Y = \bigcap_{y \in Y} yM$ and $D_Y = M_Y \setminus \bigcup_{x \in X \setminus Y} M\{x\}$.

Theorem

Let (X, r) be a finite bijective left non-degenerate solution. Let P be a prime ideal in KM with $P \cap M \neq \emptyset$. Then,

$$P \cap M = \bigcup_{Y \in \mathcal{F}} D_Y,$$

where $\mathcal{F} = \{Y \subseteq X \mid D_Y \cap P \neq \emptyset\}$.
Study $M(X, r)$ and $KM(X, r)$ for idempotent solutions => Talk Ł. Kubat,

Can prime ideals of $M(X, r)$ and $A(X, r)$ be related for non-square-free solutions?

Study $M(X, r)$ and $KM(X, r)$ for general left non-degenerate solutions.
REFERENCES