Groups with few p'-character degrees
Joint work with E. Giannelli and A. Schaeffer Fry

Noelia Rizo

Universitat de València

Noelia.Rizo@uv.es

Groups, Rings and Associated Structures 2019
Introduction: the set up

- G finite group.
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
- Character degrees: $\text{cd}(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\}$.
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
- Character degrees: $\text{cd}(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\}$.

What can we say about G from $\text{cd}(G)$?
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
- Character degrees: $\text{cd}(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\}$.

What can we say about the p-local structure of G from $\text{cd}(G)$?
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
- Character degrees: $cd(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\}$.

What can we say about the p-local structure of G from $cd(G)$?

- $\text{Irr}_p(G) = \{\chi \in \text{Irr}(G) \mid p \nmid \chi(1)\}$
Introduction: the set up

- G finite group.
- $\text{Irr}(G)$ are the irreducible characters of G.
- Character degrees: $\text{cd}(G) = \{\chi(1) \mid \chi \in \text{Irr}(G)\}$.

What can we say about the p-local structure of G from $\text{cd}(G)$?

- $\text{Irr}_{p'}(G) = \{\chi \in \text{Irr}(G) \mid p \nmid \chi(1)\}$
- $\text{cd}_{p'}(G) = \{\chi(1) \in \text{cd}(G) \mid p \nmid \chi(1)\}$
The Itô-Michler theorem

\[\text{cd}_{p'}(G) = \text{cd}(G). \]
The Itô-Michler theorem

- \(\text{cd}_{p'}(G) = \text{cd}(G) \).
- Using standard character theory: if \(G \) has normal and abelian Sylow \(p \)-subgroup, then \(p \nmid \chi(1) \) for all \(\chi \in \text{Irr}(G) \) \(\Rightarrow \) \(\text{cd}_{p'}(G) = \text{cd}(G) \).
The Itô-Michler theorem

- $\text{cd}_{p'}(G) = \text{cd}(G)$.
- Using standard character theory: if G has normal and abelian Sylow p-subgroup, then $p \nmid \chi(1)$ for all $\chi \in \text{Irr}(G) \Rightarrow \text{cd}_{p'}(G) = \text{cd}(G)$.

Theorem (Itô-Michler (1951, 1986))

$\text{cd}_{p'}(G) = \text{cd}(G)$ if and only if G has a normal and abelian Sylow p-subgroup.

- One of the first applications of the CFSG to character theory.
An extension of the Itô-Michler theorem

- Many ways to extend Itô-Michler theorem: p-blocks, fields of values, minimal situations...
An extension of the Itô-Michler theorem

- Many ways to extend Itô-Michler theorem: \(p \)-blocks, fields of values, minimal situations...
- Next minimal situation: \(\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\} \).

Theorem (M. Isaacs, A. Moretó, G. Navarro and P. H. Tiep, 2009)

Let \(p \) be a prime, let \(G \) be a finite group, and let \(P \in \text{Syl}_p(G) \). If \(\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\} \), then \(P \) is metabelian.

No knowledge of how normal is \(P \).

Let \(P \in \text{Syl}_p(G) \). If \(\text{Irr}(G) = \text{Irr}_{p'}(G) \cup \{\chi\} \), then \(P \) is normal in \(G \) or \(\text{N}_G(P) \) is maximal.
An extension of the Itô-Michler theorem

- Many ways to extend Itô-Michler theorem: p-blocks, fields of values, minimal situations...
- Next minimal situation: $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$.

Theorem (M. Isaacs, A. Moretó, G. Navarro and P. H. Tiep, 2009)

Let p be a prime, let G be a finite group, and let $P \in \text{Syl}_p(G)$. If $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$, then P is metabelian.
An extension of the Itô-Michler theorem

- Many ways to extend Itô-Michler theorem: p-blocks, fields of values, minimal situations...
- Next minimal situation: $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$.

Theorem (M. Isaacs, A. Moretó, G. Navarro and P. H. Tiep, 2009)

Let p be a prime, let G be a finite group, and let $P \in \text{Syl}_p(G)$. If $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$, then P is metabelian.

- No knowledge of how normal is P.
An extension of the Itô-Michler theorem

- Many ways to extend Itô-Michler theorem: p-blocks, fields of values, minimal situations...
- Next minimal situation: $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$.

Theorem (M. Isaacs, A. Moretó, G. Navarro and P. H. Tiep, 2009)

Let p be a prime, let G be a finite group, and let $P \in \text{Syl}_p(G)$. If $\text{cd}(G) = \text{cd}_{p'}(G) \cup \{a\}$, then P is metabelian.

- No knowledge of how normal is P.

Let $P \in \text{Syl}_p(G)$. If $\text{Irr}(G) = \text{Irr}_{p'}(G) \cup \{\chi\}$, then P is normal in G or $N_G(P)$ is maximal.
Thompson’s theorem

- The dual situation:
 \[\text{cd}_{p'}(G) = \{1\}. \]
Thompson’s theorem

- The dual situation:
 $$\text{cd}_{p'}(G) = \{1\}.$$

Theorem (Thompson (1970))

If $\text{cd}_{p'}(G) = \{1\}$, then G has a normal p-complement.
Thompson’s theorem

The dual situation:

\[cd_{p'}(G) = \{1\}. \]

Theorem (Thompson (1970))

If \(cd_{p'}(G) = \{1\} \), then \(G \) has a normal \(p \)-complement.

Theorem (Berkovich (1995))

If \(cd_{p'}(G) = \{1\} \), then \(G \) is solvable.
Some extensions of Thompson’s theorem

- Taking into account two primes.

Theorem (E. Giannelli, M. Schaeffer Fry, C. Vallejo, ’19))

Let \(\pi = \{p, q\} \) a set of primes. If \(\text{Irr}_{\pi'}(G) = \{1_G\} \) then \(G = 1 \).
Some extensions of Thompson’s theorem

- Taking into account two primes.

Theorem (E. Giannelli, M. Schaeffer Fry, C. Vallejo, ’19))

Let $\pi = \{p, q\}$ a set of primes. If $\text{Irr}_{\pi'}(G) = \{1_G\}$ then $G = 1$.

- Next minimal situation: $\text{cd}_{p'}(G) = \{1, m\}$
Some extensions of Thompson’s theorem

- Taking into account two primes.

Theorem (E. Giannelli, M. Schaeffer Fry, C. Vallejo, ’19))

Let $\pi = \{p, q\}$ a set of primes. If $\text{Irr}_{\pi'}(G) = \{1_G\}$ then $G = 1$.

- Next minimal situation: $\text{cd}_{p'}(G) = \{1, m\}$

Theorem (E. Giannelli, R., M. Schaeffer Fry, ’19)

Let $p > 3$ be a prime. If $\text{cd}_{p'}(G) = \{1, m\}$, then G is solvable and $O^{pp'}p'(G) = 1$.
On our theorem

- Many counterexamples for $p = 2$, some for $p = 3$.

Theorem (E. Giannelli, R., M. Schaeffer Fry, '19)

Let S be a non-abelian simple group and let $p > 3$ be a prime. Then there exist non-linear $\alpha, \beta \in \text{Irr}_p(S)$ with:

1. α extends to $\text{Aut}(S)$.
2. β is P-invariant for all $P \leq \text{Aut}(S)$, p-subgroup.
3. $\beta(1) \nmid \alpha(1)$.

In fact, in most cases, we have α, β extending to $\text{Aut}(S)$.

7 / 9
On our theorem

- Many counterexamples for \(p = 2 \), some for \(p = 3 \).
- It needs the Classification of Finite Simple Groups.
Many counterexamples for $p = 2$, some for $p = 3$.

It needs the Classification of Finite Simple Groups.

Theorem (E. Giannelli, R., M. Schaeffer Fry, '19)

Let S be a non-abelian simple group and let $p > 3$ be a prime. Then there exist non-linear $\alpha, \beta \in \operatorname{Irr}_{p'}(S)$ with:

1. α extends to $\operatorname{Aut}(S)$.
2. β is P-invariant for all $P \leq \operatorname{Aut}(S)$, p-subgroup.
3. $\beta(1) \nmid \alpha(1)$.
On our theorem

- Many counterexamples for $p = 2$, some for $p = 3$.
- It needs the Classification of Finite Simple Groups.

Theorem (E. Giannelli, R., M. Schaeffer Fry, '19)

Let S be a non-abelian simple group and let $p > 3$ be a prime. Then there exist non-linear $\alpha, \beta \in \text{Irr}_{p'}(S)$ with:

1. α extends to $\text{Aut}(S)$.
2. β is P-invariant for all $P \leq \text{Aut}(S)$, p-subgroup.
3. $\beta(1) \nmid \alpha(1)$.

In fact, in most cases, we have α, β extending to $\text{Aut}(S)$.
Sketch of proof

\[cd_{p'}(G) = \{1, m\}. \]
Sketch of proof

- $cd_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or
 $N \cong S \times S \times \cdots \times S$, S
 non-abelian simple.
Sketch of proof

- \(\text{cd}_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) ⇒ \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G) \). By induction, \(G/N \) solvable.
Sketch of proof

- \(cd_{p'}(G) = \{1, m\}\).
- \(N\) minimal normal subgroup of \(G \Rightarrow N\) is abelian or \(N \cong S \times S \times \cdots \times S\), \(S\) non-abelian simple.
- \(cd_{p'}(G/N) \subseteq cd_{p'}(G)\). By induction, \(G/N\) solvable.
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \nmid \alpha(1)$
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \nmid \alpha(1)$
Sketch of proof

- \(cd_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) \(\Rightarrow N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(cd_{p'}(G/N) \subseteq cd_{p'}(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup)
 - \(\beta(1) \nmid \alpha(1) \)
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \nmid \alpha(1)$
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \mid \alpha(1)$
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \nmid \alpha(1)$

\[
\begin{align*}
\chi &\in \text{Irr}(G) \\
\chi(1) &= \theta(1) = \alpha(1)' = p' \\
\Rightarrow \chi(1) &= m \\
\theta &= \alpha \times \alpha \times \cdots \times \alpha \in \text{Irr}(N) \\
N &= S \times S \times \cdots \times S
\end{align*}
\]
Sketch of proof

- \(\text{cd}_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) \(\Rightarrow \) \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup)
 - \(\beta(1) \nmid \alpha(1) \)
Sketch of proof

- \(cd_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) ⇒ \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(cd_{p'}(G/N) \subseteq cd_{p'}(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup)
 - \(\beta(1) \nmid \alpha(1) \)
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \mid \alpha(1)$
Sketch of proof

- \(cd_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) ⇒ \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(cd_{p'}(G/N) \subseteq cd_{p'}(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup)
 - \(\beta(1) \mid \alpha(1) \)
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \mid \alpha(1)$
Sketch of proof

- \(\text{cd}_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of
 \(G \Rightarrow N \) is abelian or
 \(N \cong S \times S \times \cdots \times S \), \(S \)
 non-abelian simple.
- \(\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G) \). By
 induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \),
 \(p \)-subgroup)
 - \(\beta(1) \mid \alpha(1) \)
Sketch of proof

- \(\text{cd}_{p'}(G) = \{1, m\}\).
- \(N\) minimal normal subgroup of \(G \implies N\) is abelian or \(N \cong S \times S \times \cdots \times S\), \(S\) non-abelian simple.
- \(\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)\). By induction, \(G/N\) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S)\) st.
 - \(\alpha(1) \neq 1 \neq \beta(1)\)
 - \(\alpha\) extends to \(\text{Aut}(S)\).
 - \(\beta\) \(P\)-invariant \((P \leq \text{Aut}(S), p\)-subgroup\)
 - \(\beta(1) \nmid \alpha(1)\)
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup)
 - $\beta(1) \mid \alpha(1)$
Sketch of proof

- \(cd_p'(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) ⇒ \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(cd_p'(G/N) \subseteq cd_p'(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_p'(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup)
 - \(\beta(1) \nmid \alpha(1) \)
Sketch of proof

- \(\text{cd}_{p'}(G) = \{1, m\} \).
- \(N \) minimal normal subgroup of \(G \) \(\Rightarrow \) \(N \) is abelian or \(N \cong S \times S \times \cdots \times S \), \(S \) non-abelian simple.
- \(\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G) \). By induction, \(G/N \) solvable.
- \(\alpha, \beta \in \text{Irr}_{p'}(S) \) st.
 - \(\alpha(1) \neq 1 \neq \beta(1) \)
 - \(\alpha \) extends to \(\text{Aut}(S) \).
 - \(\beta \) \(P \)-invariant (\(P \leq \text{Aut}(S) \), \(p \)-subgroup).
 - \(\beta(1) \nmid \alpha(1) \)
Sketch of proof

- $\text{cd}_{p'}(G) = \{1, m\}$.
- N minimal normal subgroup of $G \Rightarrow N$ is abelian or $N \cong S \times S \times \cdots \times S$, S non-abelian simple.
- $\text{cd}_{p'}(G/N) \subseteq \text{cd}_{p'}(G)$. By induction, G/N solvable.
- $\alpha, \beta \in \text{Irr}_{p'}(S)$ st.
 - $\alpha(1) \neq 1 \neq \beta(1)$
 - α extends to $\text{Aut}(S)$.
 - β P-invariant ($P \leq \text{Aut}(S)$, p-subgroup).
 - $\beta(1) \nmid \alpha(1)$

- N is abelian and G solvable.
THANK YOU!