Character triples and group graded equivalences

Virgilius-Aurelian Minuță

Babeș-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Informatics

Groups, Rings and Associated Structures
Spa, Belgium | June 09-15, 2019
Motivation

Categorical version of reduction theorems involving character triples.

Assumptions and notations

- G is a finite group
- $(\mathcal{K}, \mathcal{O}, k)$ is a splitting p-modular system
- $N \trianglelefteq G$, $G' \leq G$, and $N' \trianglelefteq G'$

 Assume: $N' = G' \cap N$ and $G = G'N$, hence $\bar{G} := G/N \simeq G'/N'$
- $b \in Z(\mathcal{O}N)$ and $b' \in Z(\mathcal{O}N')$ are \bar{G}-invariant blocks
- $A := b\mathcal{O}G$ and $A' := b'\mathcal{O}G'$, strongly \bar{G}-graded algebras with 1-components $B = b\mathcal{O}N$ and $B' = b'\mathcal{O}N'$
- $C_G(N) \subseteq G'$
- $C := \mathcal{O}C_G(N)$
Definition

An algebra C is a \tilde{G}-graded \tilde{G}-acted algebra if

1. C is \tilde{G}-graded, i.e. $C = \bigoplus_{g \in \tilde{G}} C_{\bar{g}}$;
2. \tilde{G} acts on C (always on the left in this presentation);
3. $\forall \bar{h} \in \tilde{G}$, $\forall c \in C_{\bar{h}}$, we have that $\bar{g}c \in C_{\bar{g}\bar{h}}$ for all $\bar{g} \in \tilde{G}$.

Remark

$C := \mathcal{O}C_G(N)$ is a \tilde{G}-graded \tilde{G}-acted algebra. Moreover, there exists two \tilde{G}-graded \tilde{G}-acted algebra homomorphisms $\zeta : C \to C_A(B)$ and $\zeta' : C \to C_{A'}(B')$, i.e. for any $\bar{h} \in \tilde{G}$ and $c \in C_A(B)_{\bar{h}}$, we have $\zeta(c) \in C_A(B)_{\bar{h}}$ and $\zeta'(c) \in C_{A'}(B')_{\bar{h}}$, and for every $\bar{g} \in \tilde{G}$, $\zeta(\bar{g}c) = \bar{g}\zeta(c)$ and $\zeta'(\bar{g}c) = \bar{g}\zeta'(c)$.
Definition

We say that \tilde{M} is a \tilde{G}-graded (A, A')-bimodule over C if:

1. \tilde{M} is an (A, A')-bimodule;
2. \tilde{M} has a decomposition $\tilde{M} = \bigoplus_{g \in \tilde{G}} \tilde{M}_g$ such that $A\tilde{g} \tilde{M}_{\tilde{x}} A' \subseteq \tilde{M}_{\tilde{g}\tilde{x}\tilde{h}}$, for all $\tilde{g}, \tilde{x}, \tilde{h} \in \tilde{G}$;
3. $\tilde{m}_g \cdot c = \tilde{g}c \cdot \tilde{m}_g$, for all $c \in C, \tilde{m}_g \in \tilde{M}_g, \tilde{g} \in \tilde{G}$, where $c \cdot \tilde{m} = \zeta(c) \cdot \tilde{m}$ and $\tilde{m} \cdot c = \tilde{m} \cdot \zeta'(c)$, for all $c \in C, \tilde{m} \in \tilde{M}$.

Remark

Note that homomorphisms between \tilde{G}-graded (A, A')-bimodules over C are just homomorphism between \tilde{G}-graded (A, A')-bimodules.
We say that a \(\tilde{G} \)-graded \((A, A')\)-bimodule over \(C \), \(\tilde{M} \), induces a \(\tilde{G} \)-graded Morita equivalence over \(C \) between \(A \) and \(A' \), if \(\tilde{M} \otimes_{A'} \tilde{M}^* \cong A \) as \(\tilde{G} \)-graded \((A, A)\)-bimodules over \(C \) and that \(\tilde{M}^* \otimes_A \tilde{M} \cong A' \) as \(\tilde{G} \)-graded \((A', A')\)-bimodules over \(C \), where the \(A \)-dual \(\tilde{M}^* = \text{Hom}_A(\tilde{M}, A) \) of \(\tilde{M} \) is a \(\tilde{G} \)-graded \((A', A)\)-bimodule.
We regard A^{op} as a \tilde{G}-graded algebra with components $(A^{\text{op}})_{\bar{g}} = A'_{\bar{g}^{-1}}$, $\forall \bar{g} \in \tilde{G}$. We denote by \ast the multiplicative operations in A^{op}. We also define the (\bar{g}, \bar{h}) component of $(A \otimes_C A^{\text{op}})_{(\bar{g}, \bar{h})} := A_{\bar{g}} \otimes_C A'_{\bar{h}}$. Let

$$\delta(\tilde{G}) := \{(\bar{g}, \bar{g}) \mid \bar{g} \in \tilde{G}\}$$

be the diagonal subgroup of $\tilde{G} \times \tilde{G}$, and let Δ^C be the diagonal part of $A \otimes_C A^{\text{op}}$:

$$\Delta^C := \Delta(A \otimes_C A^{\text{op}}) := (A \otimes_C A^{\text{op}})_{\delta(\tilde{G})} = \bigoplus_{\bar{g} \in \tilde{G}} A_{\bar{g}} \otimes_C A'_{\bar{g}^{-1}},$$

which clearly has the 1-component defined as follows:

$$\Delta^C_1 = B \otimes_C B^{\text{op}}.$$
Lemma

Δ^C is an \mathcal{O}-algebra and there exists an \mathcal{O}-algebra homomorphism from C to Δ^C:

$$\varphi : C \rightarrow \mathbb{Z}(\Delta^C_1), \varphi(c) := \zeta(c) \otimes_c 1 = 1 \otimes_c \zeta'(c).$$

Lemma

$A \otimes_C A'^{\text{op}}$ is a right Δ^C-module and a \check{G}-graded (A, A')-bimodule over C.

Lemma

Let M be a Δ^C-module, then

$$A \otimes_B M, M \otimes_{B'} A', (A \otimes_C A'^{\text{op}}) \otimes_{\Delta^C} M$$

are isomorphic as \check{G}-graded (A, A')-bimodules over C. We shall denote them by \tilde{M}.
Lemma 1 Let M be a $\Delta(A \otimes_C A'^{op})$-module and M' be a $\Delta(A' \otimes_C A''^{op})$-module. Then $M \otimes_{B'} M'$ is a $\Delta(A \otimes_C A''^{op})$-module with the multiplication operation defined as follows:

$$(a_{\bar{g}} \otimes c a''^{op}_{\bar{g}^{-1}})(m \otimes_{B'} m') := (a_{\bar{g}} \otimes c (u_{\bar{g}}'^{-1})^{op}) m \otimes_{B'} (u_{\bar{g}}' \otimes c a''^{op}_{\bar{g}^{-1}}) m'$$

for all $\bar{g} \in \tilde{G}$, $a_{\bar{g}} \in A_{\bar{g}}$, $a''^{op}_{\bar{g}^{-1}} \in A''^{op}_{\bar{g}^{-1}}$, $m \in M$, $m' \in M'$. Moreover, we have the isomorphism

$$\tilde{M} \otimes_{B'} \tilde{M}' \cong \tilde{M} \otimes_{A'} \tilde{M}'$$

of \tilde{G}-graded (A, A'')-bimodules over C.
Lemma

Let M be a $\Delta(A' \otimes_C A'^{op})$-module and M' be a $\Delta(A' \otimes_C A''^{op})$-module. Then $\text{Hom}_{B'}(M, M')$ is a $\Delta(A \otimes_C A''^{op})$-module with the following operation:

$$(a_{\tilde{g}} f a'_{\tilde{g}-1})(m) := (u_{\tilde{g}} \otimes_C (a''_{\tilde{g}-1})^{op}) f ((u_{\tilde{g}}^{-1} \otimes_C a_{\tilde{g}}^{op})m)$$

for all $\tilde{g} \in \tilde{G}$ and for all $a_{\tilde{g}} \in A_{\tilde{g}}$, $a''_{\tilde{g}-1} \in A''_{\tilde{g}-1}$, $m \in M$, $f \in \text{Hom}_{B'}(M, M')$. Moreover, we have the isomorphism

$$\text{Hom}_{B'}(\tilde{M}, \tilde{M}') \cong \text{Hom}_{A'}(\tilde{M}, \tilde{M}')$$

of \tilde{G}-graded (A, A'')-bimodules over C.
Let $B\mathcal{M}_{B'}$ and $B'\mathcal{M}^*_B := \text{Hom}_B(M, B)$ (the B-dual of M) be two bimodules that induce a Morita equivalence between B and B':

$$B \xleftarrow{\mathcal{M}^* \otimes B^-} \xrightarrow{M \otimes B'} B'$$

If M extends to a Δ^C-module, then we have the following:

1. M^* becomes a $\Delta(A' \otimes_C A^{op})$-module;
2. $\mathcal{M} := (A \otimes_C A'^{op}) \otimes_{\Delta C} M$ and $\tilde{\mathcal{M}}^* := (A' \otimes_C A^{op}) \otimes_{\Delta} (A' \otimes_C A^{op})$

M^* are \tilde{G}-graded (A, A')-bimodules over C and they induce a \tilde{G}-graded Morita equivalence over C between A and A':

$$A \xleftarrow{\sim} \xrightarrow{} A'.$
In this section, we attempt to give a version with Morita equivalences for the relationship \(\leq_c \) given in [2, Definition 2.7.].

Proposition

Let \(A \) and \(A' \) be two strongly \(\tilde{G} \)-graded algebras over \(C \). Assume that \(\tilde{M} \) is a \(\tilde{G} \)-graded \((A, A') \)-bimodule over \(C \), which induces a Morita equivalence between \(A \) and \(A' \). Let \(U \) be a (left) \(B \)-module and let \(U' \) be a (left) \(B' \)-module corresponding to \(U \) under the given equivalence. Then there is a commutative diagram:

\[
\begin{array}{ccc}
E(U) & \sim & E(U') \\
\uparrow & & \uparrow \\
C_A(B) & \sim & C_A'(B') \\
\uparrow & & \uparrow \\
C & id_C & C.
\end{array}
\]
Definition

Let V be a G-invariant simple $\mathcal{K}B$-module, V' a G'-invariant simple $\mathcal{K}B'$-module. We say that $(A, B, V) \succeq_c (A', B', V')$ if

1. $G = G'N$, $N' = N \cap G'$
2. $C_G(N) \subseteq G'$
3. we have the following commutative diagram of \tilde{G}-graded \mathcal{K}-algebras:

\[
\begin{array}{ccc}
E(V) & \sim & E(V') \\
\uparrow & & \uparrow \\
\mathcal{K}C & \xrightarrow{id_C} & \mathcal{K}C.
\end{array}
\]

where $\mathcal{K}C = \mathcal{K}C_G(N)$ is regarded as a \tilde{G}-graded \tilde{G}-acted \mathcal{K}-algebra, with 1-component $\mathcal{K}Z(N)$.
Proposition

Assume that \(\tilde{M} \) induces a \(\tilde{G} \)-graded Morita equivalence over \(C := \mathcal{O}C_G(N) \) between \(A \) and \(A' \). Let \(V \) be a simple \(KB \)-module and \(V' \) be a simple \(KB' \)-module corresponding to \(V' \) via the given correspondence. Then we have that \((A, B, V) \geq_c (A', B', V') \).

Proposition

Let \(\theta \) be the character associated to \(V \) and \(\theta' \) the character associated to \(V' \). If \((A, B, V) \geq_c (A', B', V') \), then \((G, N, \theta) \geq_c (G', N', \theta') \).
Butterfly theorem

Let \hat{G} be another group with normal subgroup N. Assume that:

1. $C_G(N) \subseteq G'$,
2. \tilde{M} induces a \tilde{G}-graded Morita equiv. over C between A and A';
3. the conjugation maps $\varepsilon : G \to \text{Aut}(N)$ and $\hat{\varepsilon} : \hat{G} \to \text{Aut}(N)$ satisfy $\varepsilon(G) = \hat{\varepsilon}(\hat{G})$.

Denote $\hat{G}' = \hat{\varepsilon}^{-1}(\varepsilon(G'))$. Then there is a \hat{G}/N-graded Morita equivalence over $\hat{C} := \hat{O}C_{\hat{G}}(N)$ between $\hat{A} := b\hat{O}\hat{G}$ and $\hat{A}' := b'\hat{O}\hat{G}'$.

\[
\begin{align*}
\hat{A} &:= b\hat{O}\hat{G} & A &:= b\hat{O}\hat{G} \sim \tilde{M} & A' &:= b'\hat{O}\hat{G}' & \hat{A}' &:= b'\hat{O}\hat{G}' \\
b\hat{O}NC_{\hat{G}}(N) &\sim b\hat{O}NC_{\hat{G}}(N) \sim b'O'\hat{N}'C_{\hat{G}}(N) & b\hat{O}NC_{\hat{G}}(N) &\sim b'O'\hat{N}'C_{\hat{G}}(N) & b'O'\hat{N}'C_{\hat{G}}(N) & \\
B &:= \hat{O}\hat{N}b \sim M & B' &:= \hat{O}\hat{N}'b'.
\end{align*}
\]