Character degrees in π-separable groups

Nicola Grittini

Università degli Studi di Firenze

GRAS2019
π-separable groups and Hall π-subgroups

Let π be a set of primes. A number n is called a π-number if all its prime divisors are in π. Denote as π′ the complement set of π.

Definition

A group G is called π-separable if, given a composition series

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_r = \{1\},$$

then each factor group N_1/N_{i+1} is either a π-group or a π′-group, i.e., its order is either a π-number or a π′-number.
Let π be a set of primes. A number n is called a π-number if all its prime divisors are in π. Denote as π' the complement set of π.

Definition

A group G is called π-separable if, given a composition series

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_r = \{1\},$$

then each factor group N_1/N_{i+1} is either a π-group or a π'-group, i.e., its order is either a π-number or a π'-number.

Definition

A subgroup $H \leq G$ is called Hall π-subgroup of G if $|H| = |G|_{\pi}$, i.e., if its order is equal to the maximal product of powers of primes in π which divides $|G|$.

If G is a π-separable group, then it has a Hall π-subgroup and two distinct Hall π-subgroups are conjugated.
Character restriction and B_{π}-characters

Note that a $\{p\}$-separable group is a p-solvable group.

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_{p'}(G)$ such that the restriction to p-regular elements realizes a bijection between $B_{p'}(G)$ and $\text{IBr}_p(G)$.

Let χ^π be the restriction of a character χ to π-elements, i.e., to elements such that their order is a π-number. For any $\chi \in \text{Char}(G)$, we say that χ^π is a π-partial character. A π-partial character χ^π is irreducible if it cannot be written as a sum of two other π-partial characters.

Theorem (Isaacs, 1982)

If G is π-separable, the set $I_{\pi}(G)$ of irreducible π-partial characters is a basis for the class functions on π-elements. Moreover, there exists a canonically defined set $B_{\pi}(G) \subseteq \text{Irr}(G)$ such that the restriction to π-elements realizes a bijection $B_{\pi}(G) \mapsto I_{\pi}(G)$.
Character restriction and B_{π}-characters

Note that a $\{p\}$-separable group is a p-solvable group.

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_{p'}(G)$ such that the restriction to p-regular elements realizes a bijection between $B_{p'}(G)$ and $\text{IBr}_p(G)$.

Let χ^* be the restriction of a character χ to π-elements, i.e. to elements such that their order is a π-number. For any $\chi \in \text{Char}(G)$, we say that χ^* is a π-partial character. A π-partial character χ^* is irreducible if it cannot be written as a sum of two other π-partial characters.
Character restriction and B_{π}-characters

Note that a $\{p\}$-separable group is a p-solvable group.

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_p'(G)$ such that the restriction to p-regular elements realizes a bijection between $B_p'(G)$ and $\text{IBr}_p(G)$.

Let χ^* be the restriction of a character χ to π-elements, i.e. to elements such that their order is a π-number. For any $\chi \in \text{Char}(G)$, we say that χ^* is a π-partial character. A π-partial character χ^* is irreducible if it cannot be written as a sum of two other π-partial characters.

Theorem (Isaacs, 1982)

If G is π-separable, the set $I_{\pi}(G)$ of irreducible π-partial characters is a basis for the class functions on π-elements.

Moreover, there exists a canonically defined set $B_{\pi}(G) \subseteq \text{Irr}(G)$ such that the restriction to π-elements realizes a bijection $B_{\pi}(G) \leftrightarrow I_{\pi}(G)$.
Variants of Ito-Michler theorem

A theorem of Michler affirms that a group G has a normal Sylow p-subgroup if and only if p does not divide the degree of any character in $\text{IBr}_p(G)$.

Theorem (Isaacs, 2018)

A π-separable group G has a normal π-complement if and only if the degree of every character in $\text{B}_\pi(G)$ is a π-number.
Variants of Ito-Michler theorem

A theorem of Michler affirms that a group G has a normal Sylow p-subgroup if and only if p does not divide the degree of any character in $\text{IBr}_p(G)$.

Theorem (Isaacs, 2018)

A π-separable group G has a normal π-complement if and only if the degree of every character in $B_\pi(G)$ is a π-number.

On the other hand, the famous Theorem of Ito-Michler says that a group G has a normal abelian Sylow p-subgroup if and only if p does not divide the degree of any character in $\text{Irr}(G)$.

Theorem

Let G be a finite π-separable group and let p be any prime. Then, G has a normal abelian Sylow p-subgroup if and only if $p \nmid \chi(1)$ for every $\chi \in B_\pi(G) \cup B_\pi'(G)$.
Variants of Ito-Michler theorem

A theorem of Michler affirms that a group G has a normal Sylow p-subgroup if and only if p does not divide the degree of any character in $\text{IBr}_p(G)$.

Theorem (Isaacs, 2018)

A π-separable group G has a normal π-complement if and only if the degree of every character in $B_\pi(G)$ is a π-number.

On the other hand, the famous Theorem of Ito-Michler says that a group G has a normal abelian Sylow p-subgroup if and only if p does not divide the degree of any character in $\text{Irr}(G)$.

Theorem

Let G be a finite π-separable group and let p be any prime. Then, G has a normal abelian Sylow p-subgroup if and only if $p \nmid \chi(1)$ for every $\chi \in B_\pi(G) \cup B_\pi'(G)$.

Corollary

If G is a finite π-separable group, a prime p divides the degree of some characters in $\text{Irr}(G)$ if and only if it divides the degree of some characters in $B_\pi(G) \cup B_\pi'(G)$.
Variants of Thompson’s theorem

Thompson’s theorem says that, if a prime p divides the degree of each nonlinear character in $\text{Irr}(G)$, then G has a normal p-complement. There are already variants, for ordinary characters, which involve more than one prime.

Theorem (Navarro and Wolf, 2002)

Let G be a π-separable group and let H be a Hall π-subgroup for G and $N = N_G(H)$. Then, $\text{Irr}_{\pi'}(G) = \text{Lin}(G)$ if and only if $G' \cap N = H'$.

Nicola Grittini (Università degli Studi di Firenze)
Variants of Thompson’s theorem

Thompson’s theorem says that, if a prime p divides the degree of each nonlinear character in $\text{Irr}(G)$, then G has a normal p-complement. There are already variants, for ordinary characters, which involve more than one prime.

Theorem (Navarro and Wolf, 2002)

Let G be a π-separable group and let H be a Hall π-subgroup for G and $N = N_G(H)$. Then, $\text{Irr}_{\pi'}(G) = \text{Lin}(G)$ if and only if $G' \cap N = H'$.

If we ask the same condition to hold for the characters in $B_\pi(G)$, or in $B_{\pi'}(G)$, we can have more detailed informations on the group structure.

Theorem

Let G be a π-separable group, let H be a Hall π-subgroup for G and let $N = N_G(H)$. Then,

- $\text{Irr}_{\pi'}(G) \cap B_\pi(G) \subseteq \text{Lin}(G)$ if and only if $G' \cap H = H'$;
- $\text{Irr}_{\pi'}(G) \cap B_{\pi'}(G) \subseteq \text{Lin}(G)$ if and only if $G' \cap N \leq H$.
Variants of Thompson’s theorem

Thompson’s theorem says that, if a prime p divides the degree of each nonlinear character in $\text{Irr}(G)$, then G has a normal p-complement. There are already variants, for ordinary characters, which involve more than one prime.

Theorem (Navarro and Wolf, 2002)

Let G be a π-separable group and let H be a Hall π-subgroup for G and $N = N_G(H)$. Then, $\text{Irr}_{\pi'}(G) = \text{Lin}(G)$ if and only if $G' \cap N = H'$.

If we ask the same condition to hold for the characters in $\text{B}_\pi(G)$, or in $\text{B}_{\pi'}(G)$, we can have more detailed informations on the group structure.

Theorem

Let G be a π-separable group, let H be a Hall π-subgroup for G and let $N = N_G(H)$. Then,

- $\text{Irr}_{\pi'}(G) \cap \text{B}_\pi(G) \subseteq \text{Lin}(G)$ if and only if $G' \cap H = H'$;
- $\text{Irr}_{\pi'}(G) \cap \text{B}_{\pi'}(G) \subseteq \text{Lin}(G)$ if and only if $G' \cap N \leq H$;
- $\text{Irr}_{\pi'}(G) \cap (\text{B}_\pi(G) \cup \text{B}_{\pi'}(G)) \subseteq \text{Lin}(G)$ if and only if $\text{Irr}_{\pi'}(G) = \text{Lin}(G)$.
Thank you!