The blocks of the periplectic Brauer algebra

Sigiswald Barbier

Joint work with:
Anton Cox and Maud De Visscher
City, University of London

Ghent University
Schur-Weyl duality

\[GL(m) \rightarrow (\mathbb{C}^m)^{\otimes n} \rightarrow \mathbb{C} \Sigma_n \]
Schur-Weyl duality

\[\text{GL}(m) \bigcup \text{O}(m) \bigcap \mathbb{C} \Sigma_n \bigcap B_n(m) \cong (\mathbb{C}^m)^\otimes n \]
Schur-Weyl duality

$GL(2m) \cup \Sigma_C \cap Sp(2m) \rightarrow (\mathbb{C}^{2m})^\otimes n \leftarrow \mathbb{C}^\Sigma \cap B_n(-2m)$
Schur-Weyl duality

\[\mathfrak{gl}(m|2k) \cup \mathfrak{osp}(m|2k) \subseteq (\mathbb{C}^{m|2k})^\otimes_n \cap B_n(m-2k) \]

\[\mathbb{C}\Sigma_n \]
Schur-Weyl duality

\[\mathfrak{gl}(m|m) \quad \cup \quad \mathfrak{pe}(m) \quad \Rightarrow \quad (\mathbb{C}^{m|m}) \otimes n \quad \Leftarrow \quad \mathbb{C}\Sigma_n \quad \cap \quad A_n \]
(n, n)-Brauer diagrams

n-northern nodes
(n, n)-Brauer diagrams

\[\bullet \quad \bullet \]

\[\bullet \quad \bullet \]

n-southern nodes
(n, n)-Brauer diagrams

Propagating lines
(n, n)-Brauer diagrams

Propagating lines, cups
(n,n)-Brauer diagrams

Propagating lines, cups and caps
(n, n)-Brauer diagrams

Only propagating lines \Rightarrow Symmetric group
The (periplectic) Brauer algebra

To multiply two Brauer diagrams:
The (periplectic) Brauer algebra

To multiply two Brauer diagrams:
The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

\[\circ \]
\[\delta \]

Replace each closed loop by \(\delta \),
\[\delta = 0 \] for the periplectic case
The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

Calculate the appropriate sign using certain rules.
Theorem (Kujawa–Tharp 2017)

The Brauer algebra $B_n(\delta)$, with $\delta \neq 0$:

- The p-restricted partitions of $n, n - 2, n - 4, \ldots, 0$ (n even)
- The p-restricted partitions of $n, n - 2, n - 4, \ldots, 1$ (n odd)

A partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is p-restricted if $\lambda_i - \lambda_{i+1} < p$ for all i.
Labelling of simple modules

Theorem (Kujawa–Tharp 2017)

The Brauer algebra $B_n(\delta)$, with $\delta \neq 0$:

- The p-restricted partitions of $n, n - 2, n - 4, \ldots, 0$ (n even)
- The p-restricted partitions of $n, n - 2, n - 4, \ldots, 1$ (n odd)

A partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is p-restricted if $\lambda_i - \lambda_{i+1} < p$ for all i.
Theorem (Kujawa–Tharp 2017)

The Brauer algebra $B_n(0)$:

- The p-restricted partitions of n, $n - 2$, $n - 4$, \ldots, 2 (n even)
- The p-restricted partitions of n, $n - 2$, $n - 4$, \ldots, 1 (n odd)

A partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is p-restricted if $\lambda_i - \lambda_{i+1} < p$ for all i.
Labelling of simple modules

Theorem (Kujawa–Tharp 2017)

The periplectic Brauer algebra \(A_n \):

- The \(p \)-restricted partitions of \(n, n - 2, n - 4, \ldots, 2 \) (\(n \) even)
- The \(p \)-restricted partitions of \(n, n - 2, n - 4, \ldots, 1 \) (\(n \) odd)

A partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \) is \(p \)-restricted if \(\lambda_i - \lambda_{i+1} < p \) for all \(i \).
$\lambda \sim \mu$ if there is a sequence

$$\lambda = \lambda_1, \lambda_2, \ldots, \lambda_t = \mu$$

with corresponding indecomposable A-modules

$$M_1, M_2, \ldots M_{t-1}$$

where $L(\lambda_i)$ and $L(\lambda_{i+1})$ appear as composition factors of M_i.

Each equivalence class corresponds to a block of A.
Blocks

$\lambda \sim \mu$ if there is a sequence

\[
\lambda = \lambda_1, \lambda_2, \ldots, \lambda_t = \mu
\]

with corresponding indecomposable A-modules

\[
M_1, M_2, \ldots M_{t-1}
\]

where $L(\lambda_i)$ and $L(\lambda_{i+1})$ appear as composition factors of M_i.

Each equivalence class corresponds to a block of A.
Decomposition of A in indecomposable two-sided ideals:

$$A = B_1 \oplus B_2 \oplus \cdots \oplus B_k,$$

each B_i is a block of A.

These blocks correspond also to a decomposition of the category of finite dimensional A-modules.
Decomposition of A in indecomposable two-sided ideals:

$$A = B_1 \oplus B_2 \oplus \cdots \oplus B_k,$$

each B_i is a block of A.

These blocks correspond also to a decomposition of the category of finite dimensional A-modules.
Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)

In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

\[
\begin{align*}
\rho_0 &= \emptyset, & \rho_1 &= \begin{array}{c}
\hline
\end{array}, & \rho_2 &= \begin{array}{c}
\hline
\hline
\hline
\end{array}, & \rho_3 &= \begin{array}{c}
\hline
\hline
\hline
\hline
\hline
\end{array}, & \cdots
\end{align*}
\]
Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)

In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

\[
\begin{array}{c}
\square \\
\end{array}
\text{ or }
\begin{array}{c}
\square \\
\end{array}
\]

The possible 2-core:

\[
\begin{array}{c}
\rho_0 = \emptyset, \\
\rho_1 = \begin{array}{c}
\square \\
\end{array}, \\
\rho_2 = \begin{array}{c}
\square \\
\square \\
\end{array}, \\
\rho_3 = \begin{array}{c}
\square \\
\square \\
\square \\
\end{array}, \\
\vdots
\end{array}
\]
Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)

In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

\[
\begin{array}{c}
\begin{array}{c}
\hline
\hline
\end{array}
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\begin{array}{c}
\hline
\hline
\end{array}
\end{array}
\]

The possible 2-core:

\[
\rho_0 = \emptyset, \quad \rho_1 = \begin{array}{c}
\begin{array}{c}
\hline
\hline
\end{array}
\end{array}, \quad \rho_2 = \begin{array}{c}
\begin{array}{c}
\hline
\hline
\end{array}
\end{array}, \quad \rho_3 = \begin{array}{c}
\begin{array}{c}
\hline
\hline
\end{array}
\end{array}, \quad \ldots
\]

Blocks in characteristic p

Proposition

If two partitions have the same 2-core, they belong to the same block.

Proposition

If two partitions of equal size have the same p-core, they belong to the same block.
Proposition

If two partitions have the same 2-core, they belong to the same block.

Proposition

If two partitions of equal size have the same p-core, they belong to the same block.
Blocks in characteristic p

Proposition

Consider the r-staircase partition ρ_r with

$$2r - 1 < p \quad \text{and} \quad \frac{r(r + 1)}{2} + p - 2r > n.$$

Then $\lambda \sim \rho_r$ if and only if the 2-core of λ is ρ_r.

Proposition

If λ has as 2-core ρ_r not satisfying these conditions, then

- $\lambda \sim \emptyset$ (n even),
- $\lambda \sim \square$ (n odd).
Blocks in characteristic p

Proposition

Consider the r-staircase partition ρ_r with

$$2r - 1 < p \quad \text{and} \quad \frac{r(r + 1)}{2} + p - 2r > n.$$

Then $\lambda \sim \rho_r$ if and only if the 2-core of λ is ρ_r.

Proposition

If λ has as 2-core ρ_r not satisfying these conditions, then

- $\lambda \sim \emptyset$ \hspace{1cm} (n even),
- $\lambda \sim \Box$ \hspace{1cm} (n odd).
Blocks in characteristic p

Theorem

The block decomposition of A_n is given by

$$B_n(\kappa) \oplus \bigoplus_{r} B_n(\rho_r).$$

Here $\kappa = (\square)$ if n is odd or $\kappa = \emptyset$ if n is even.

The sum is over all $r \geq 2$ such that

- $2r - 1 < p$,
- $\frac{r(r+1)}{2} + p - 2r > n$,
- $\frac{r(r+1)}{2} = n - 2k$.

In particular if $n \geq (p^2 + 7)/8$, there is only one block.
Blocks in characteristic p

Theorem

The block decomposition of A_n is given by

$$B_n(\kappa) \oplus \bigoplus_{r} B_n(\rho_r).$$

Here $\kappa = (\square)$ if n is odd or $\kappa = \emptyset$ if n is even. The sum is over all $r \geq 2$ such that

- $2r - 1 < p$,
- $\frac{r(r+1)}{2} + p - 2r > n$,
- $\frac{r(r+1)}{2} = n - 2k$.

In particular if $n \geq (p^2 + 7)/8$, there is only one block.
Blocks in characteristic p

Theorem

The block decomposition of A_n is given by

$$B_n(\kappa) \oplus \bigoplus_{r} B_n(\rho_r).$$

Here $\kappa = (\square)$ if n is odd or $\kappa = \emptyset$ if n is even. The sum is over all $r \geq 2$ such that

- $2r - 1 < p$,
- $\frac{r(r+1)}{2} + p - 2r > n$,
- $\frac{r(r+1)}{2} = n - 2k$.

In particular if $n \geq (p^2 + 7)/8$, there is only one block.