LOCAL PROPERTIES OF CUT GROUPS

Andreas Bächle
(joint with M. Caicedo, E. Jespers and S. Maheshwary)

Groups, Rings and associated structures 2019
Spa, Belgium, June 09 - 15, 2019
Let G throughout be a **finite** group.
Let G throughout be a **finite** group.

$G \text{ rational } :\iff \text{CT}(G) \in \mathbb{Q}^{h \times h}$

\[
\text{CT}(G) = \begin{pmatrix}
\end{pmatrix}
\]
Let G throughout be a finite group.

G rational : \iff $CT(G) \in \mathbb{Q}^{h \times h}$

$\iff \forall x, y \in G: \langle x \rangle = \langle y \rangle \Rightarrow x \sim y$
Let G throughout be a **finite** group.

G rational $: \iff CT(G) \in \mathbb{Q}^{h \times h}$

$\iff \forall x, y \in G: \langle x \rangle = \langle y \rangle \Rightarrow x \sim y$

G cut $: \iff Z(U(\mathbb{Z} G)) = \pm Z(G)$

$CT(G) = \begin{pmatrix} \ldots \end{pmatrix}$
Let G throughout be a **finite** group.

G rational \iff $\text{CT}(G) \in \mathbb{Q}^{h \times h}$

$\iff \forall x, y \in G: \langle x \rangle = \langle y \rangle \Rightarrow x \sim y$

G cut \iff $\text{Z}(U(\mathbb{Z}G)) = \pm \mathbb{Z}(G)$

$\iff \forall \chi \in \text{Irr}(G): \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), d_{\chi} \in \mathbb{Z}_{\geq 0}$
Let G throughout be a **finite** group.

G rational : \iff $CT(G) \in \mathbb{Q}^{h \times h}$
\[
\iff \forall x, y \in G: \langle x \rangle = \langle y \rangle \Rightarrow x \sim y
\]

G cut : \iff $Z(U(ZG)) = \pm Z(G)$
\[
\iff \forall \chi \in \text{Irr}(G): \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_\chi}), d_\chi \in \mathbb{Z}_{\geq 0}
\]
\[
\iff \forall x \in G: \quad \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0}
\]

$CT(G) = \begin{pmatrix} \text{\textcolor{blue}{\rule{1cm}{1cm}}} \end{pmatrix}$

$CT(G) = \begin{pmatrix} \text{\textcolor{orange}{\rule{1cm}{1cm}}} \end{pmatrix}$

$CT(G) = \begin{pmatrix} \text{\textcolor{red}{\rule{1cm}{1cm}}} \end{pmatrix}$
Let G throughout be a **finite** group.

\[G \text{ rational} : \iff \text{CT}(G) \in \mathbb{Q}^{h \times h} \]
\[\iff \forall x, y \in G: \{x\} = \{y\} \Rightarrow x \sim y \]

\[G \text{ cut} : \iff \text{Z}(\text{U}(\mathbb{Z}G)) = \pm \text{Z}(G) \]
\[\iff \forall \chi \in \text{Irr}(G): \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d \chi}), d \chi \in \mathbb{Z}_{\geq 0} \]
\[\iff \forall x \in G: \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d x}), d x \in \mathbb{Z}_{\geq 0} \]
\[\iff \forall x, y \in G: \{x\} = \{y\} \Rightarrow x \sim y \text{ or } x \sim y^{-1} \]

\[
\text{CT}(G) = \begin{pmatrix}
\vdots \\
\end{pmatrix}
\]
\[
\text{CT}(G) = \begin{pmatrix}
\vdots \\
\end{pmatrix}
\]
\[
\text{CT}(G) = \begin{pmatrix}
\vdots \\
\end{pmatrix}
\]

2
Theorem (Bakshi-Maheshwary-Passi, 2017)

\[G \neq 1 \text{ cut group, then } 2 \mid |G| \text{ or } 3 \mid |G|. \]
Theorem (Bakshi-Maheshwary-Passi, 2017)

\[G \neq 1 \text{ cut group, then } 2 \mid |G| \text{ or } 3 \mid |G|. \]

\(f(r) \): number of all groups of order \(r \),
\(c(r) \): number of cut groups of order \(r \).
Theorem (Bakshi-Maheshwary-Passi, 2017)

\[G \neq 1 \text{ cut group, then } \quad 2 \mid |G| \text{ or } 3 \mid |G|. \]

\(f(r) \): number of all groups of order \(r \),
\(c(r) \): number of cut groups of order \(r \).

Theorem

\[
\lim_{n \to \infty} \frac{\ln c(p^n)}{\ln f(p^n)} = 1, \quad \text{for } p \in \{2, 3\}.
\]
Percentage of rational and cut groups in all groups

Rational groups vs Cut groups

Rational Cut
An old conjecture:

<table>
<thead>
<tr>
<th>Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G rational, $P \in Syl_2(G) \implies P$ rational?</td>
</tr>
</tbody>
</table>
An old conjecture:

Conjecture

\[G \text{ rational}, \ P \in Syl_2(G) \implies P \text{ rational?} \]

In 2012, I.M. Isaacs and G. Navarro presented counterexamples of order 1536 to this conjecture. Yet, they also proved:

Theorem (Isaacs-Navarro, 2012)

Let \(G \) be a solvable rational group and \(P \in Syl_2(G) \) has nilpotency class at most 2. Then \(P \) is rational.
Problem A

\[G \text{ cut, } P \in \text{Syl}_3(G) \implies P \text{ cut?} \]
Problem A

$G \text{ cut, } P \in \text{Syl}_3(G) \implies P \text{ cut?}$

Why might $p = 3$ really be different?
Why might $p = 3$ really be different?

An element $x \in G$ is called inverse semi-rational (isr) in G iff for all $y \in G$ s.t. $\langle x \rangle = \langle y \rangle$: $x \sim y$ or $x \sim y^{-1}$.

Hence:

H cut $\iff \forall x \in H: x$ inverse semi-rational in H.
Problem A

$G \text{ cut, } P \in \text{Syl}_3(G) \implies P \text{ cut?}$

Why might $p = 3$ really be different?

An element $x \in G$ is called inverse semi-rational (isr) in G iff for all $y \in G$ s.t. $\langle x \rangle = \langle y \rangle$: $x \sim y$ or $x \sim y^{-1}$.

Hence:

$H \text{ cut } \iff \forall x \in H: x \text{ inverse semi-rational in } H.$

Lemma

Let $x \in G$ be a 3-element. Then

$x \text{ is isr in } G \iff x \text{ is isr in } P \text{ for some } P \in \text{Syl}_3(G) \text{ with } x \in P.$
Problem A

G cut, $P \in \text{Syl}_3(G) \implies P$ cut?

Theorem

Let G be a cut group and $P \in \text{Syl}_3(G)$. Then P is also cut, provided one of the following holds:

1. G is supersolvable,
2. G is a Frobenius group,
3. G is simple,
4. G is of odd order and $O_3(G)$ is abelian,
5. $|G| \leq 2 \cdot 3^6$ or $|G| \in \{2 \cdot 3^6, 2 \cdot 3 \cdot 7^2\}$.
Problem A

G cut, $P \in \text{Syl}_3(G)$ \implies P cut?

Theorem

Let G be a cut group and $P \in \text{Syl}_3(G)$. Then P is also cut, provided one of the following holds:

1. G is supersolvable,
2. G is a Frobenius group,
3. G is simple,
4. G is of odd order and $O_3(G)$ is abelian,
5. $|G| \leq 2000$ or $|G| \in \{2^2 \cdot 3^6, 2^3 \cdot 3^6, 2^2 \cdot 3^7\}$.

Definition. $\pi(G) = \{p \text{ prime}: p \mid |G|\}$, the prime spectrum of G.
Definition. $\pi(G) = \{p \text{ prime}: p \mid |G|\}$, the prime spectrum of G.

Remark. $|\pi(S_n)| \to \infty$ for $n \to \infty$.
Definition. $\pi(G) = \{p \text{ prime}: p \mid |G|\}$, the *prime spectrum of G*.

Remark. $|\pi(S_n)| \to \infty$ for $n \to \infty$.

Theorem (Gow, 1976)

Let G be a solvable rational group. Then $\pi(G) \subseteq \{2, 3, 5\}$.
Definition. \(\pi(G) = \{p \text{ prime}: p \mid |G|\} \), the prime spectrum of \(G \).

Remark. \(|\pi(S_n)| \rightarrow \infty \) for \(n \rightarrow \infty \).

Theorem (Gow, 1976)

Let \(G \) be a solvable rational group. Then \(\pi(G) \subseteq \{2, 3, 5\} \).

Theorem (Chillag-Dolfi, 2010; B, 2017)

Let \(G \) be a solvable cut group. Then \(\pi(G) \subseteq \{2, 3, 5, 7\} \).
G solvable. If G is rational, then $\pi(G) \subseteq \{2, 3, 5\}$.
If G is cut, then $\pi(G) \subseteq \{2, 3, 5, 7\}$.
G solvable. If G is rational, then $\pi(G) \subseteq \{2, 3, 5\}$.
 If G is cut, then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Every $\{2, 3\}$-group can be embedded in a rational $\{2, 3\}$-group.
G solvable. If G is rational, then $\pi(G) \subseteq \{2, 3, 5\}$.
If G is cut, then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Every $\{2, 3\}$-group can be embedded in a rational $\{2, 3\}$-group.

Theorem (Hegedűs, 2005)

*If G is a solvable rational group and $P \in \text{Syl}_5(G)$.
Then $P \trianglelefteq G$ and $\exp P | 5$.***
G solvable. If G is rational, then $\pi(G) \subseteq \{2, 3, 5\}$. If G is cut, then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Every $\{2, 3\}$-group can be embedded in a rational $\{2, 3\}$-group.

Theorem (Hegedűs, 2005)

*If G is a solvable rational group and $P \in Syl_5(G)$, then $P \trianglelefteq G$ and $\exp P \mid 5$.***

Remark

Let G be a solvable cut group and $p \in \{2, 3, 5, 7\}$, $P \in Syl_p(G)$. The p-length of G and the exponent of P can be arbitrarily large.
G solvable. If G is rational, then $\pi(G) \subseteq \{2, 3, 5\}$. If G is cut, then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Every $\{2, 3\}$-group can be embedded in a rational $\{2, 3\}$-group.

Theorem (Hegedűs, 2005)

If G is a solvable rational group and $P \in \text{Syl}_5(G)$. Then $P \trianglelefteq G$ and $\exp P \mid 5$.

Remark

Let G be a solvable cut group and $p \in \{2, 3, 5, 7\}$, $P \in \text{Syl}_p(G)$. The p-length of G and the exponent of P can be arbitrarily large.

Problem B

Let G be a solvable cut group. Is it true that $\exp O_5(G) \mid 5$ and $\exp O_7(G) \mid 7$?
REFERENCES

A. Bächle, M. Caicedo, E. Jespers, S. Maheshwary, Global and local properties of finite groups with only finitely many central units in their integral group ring, 12 pages, submitted, 1808.03546 [math.GR], 2018.

Thank you for your attention!