Given a group G, let $U(\mathbb{Z}[G])$ be the group of units of the integral group ring $\mathbb{Z}[G]$ and let $\mathcal{Z}(U(\mathbb{Z}[G]))$ be its center. Trivially, $\mathcal{Z}(U(\mathbb{Z}[G]))$ contains $\pm \mathcal{Z}(G)$, where $\mathcal{Z}(G)$ denotes the center of G. In case $\mathcal{Z}(U(\mathbb{Z}[G])) = \pm \mathcal{Z}(G)$, i.e., all central units of $\mathbb{Z}[G]$ are trivial, the group G is called a cut-group or a group with the cut-property. In 1990, Ritter and Sehgal gave a characterization for finite cut-groups, which was later generalized to arbitrary groups, by Dokuchaev, Polcino Milies and Sehgal. We say that an element $x \in G$ of finite order has the RS-property (or is an RS-element) in G if

$$x^j \sim_G x^{\pm 1} \text{ for all } j \in U(o(x)),$$

where $o(x)$ denotes the order of x, $U(n) := \{j : 1 \leq j \leq n, \gcd(j, n) = 1\}$, and $y \sim_G z$ denotes y is conjugate to z in G. Let $\Phi(G)$ denote the FC-subgroup of G, i.e., the subgroup consisting of those elements of G which have only finitely many conjugates in G, and $\Phi^+(G)$ its torsion subgroup. Then the characterization of cut-groups given by Dokuchaev et al can be stated to say that G is a cut-group if, and only if, every element of $\Phi^+(G)$ has the RS-property in G. In this talk, I shall present recent results on arbitrary (not necessarily finite) cut-groups, obtained exploring the RS-property.